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Abstract 

This case study shows how an analytical architecture fault-modeling approach can be combined 
with confidence arguments to diagnose a time-sensitive design error in a control system and to 
provide evidence that proposed changes to the system address the problem. The analytical ap-
proach, based on the SAE Architecture Analysis and Design Language for its well-defined timing 
and fault behavior semantics, demonstrates that such hard-to-test errors can be discovered and 
corrected early in the lifecycle, thereby reducing rework cost. The case study shows that by com-
bining the analytical approach with confidence maps, we can present a structured argument that 
system requirements have been met and problems in the design have been addressed adequately—
increasing our confidence in the system quality. The case study analyzes an aircraft engine control 
system that manages fuel flow with a stepper motor. The original design was developed and veri-
fied in a commercial model-based development environment without discovering the potential for 
missed step commanding. During system tests, actual fuel flow did not correspond to the desired 
fuel flow under certain circumstances. The problem was traced to missed execution of com-
manded steps due to variation in execution time. 
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 Introduction 

The purpose of this case study is to show how architecture fault modeling and analysis can be 
used to diagnose a time-sensitive design error encountered in a control system and to investigate 
whether proposed changes to the system address the problem. The analytical approach demon-
strates that such errors, which are notoriously hard to test for, can be discovered and corrected 
early in the lifecycle, thereby reducing rework cost. The case study shows that by combining the 
analytical approach with confidence maps, we can present a structured argument that system re-
quirements have been met and problems in the design have been addressed adequately—increas-
ing our confidence in the system quality. 

In this case study, we investigated a stepper-motor system (SMS) that is part of an aircraft engine 
control system that manages fuel flow by adjusting a fuel valve. The baseline design for control-
ling the valve is from an actual system, but we have omitted or changed inessential application- 
and manufacturer-specific details. The original design was developed and verified in a model-
based development environment called SCADE,1 and an implementation was tested on actual 
equipment.  

In some situations, actual fuel flow did not correspond to the desired fuel flow. The problem was 
traced to the fact that the stepper motor sometimes did not execute enough steps to achieve the 
commanded fuel-valve position. The failure was suspected to be due to execution time jitter in the 
stepper-motor control system, which resulted in commands being sent to the actuator at variable 
time intervals. The failure was not immediately detectable as there is no direct feedback from the 
stepper motor, and the feedback loop of the engine control system does not have sufficient fidelity 
to detect single missed steps during executions. For this reason, we focus on the SMS portion of 
the engine control system, that is, the stepper motor, its actuator, and the position control system 
for the stepper motor. 

Two repairs were proposed to correct the problem, but there was limited evidence before testing 
that either proposed solution would address the problem of missed steps. Our analytical approach 
provides predictive evidence, completed with prototype testing evidence, that the problem is in-
herent in the architecture design of the SMS. The findings regarding the stepper-motor position 
control system are applicable not only to the engine control system but also to any system that 
uses a stepper motor in an open-loop setting, such as those that control other types of valves, 
flaps, rudders, and other mechanical parts. 

SCADE is a notation for modeling system behavior using interacting and nested state machines. 
While the SCADE tool set is able to verify behavioral aspects of the system specification, it does 
not address the time-sensitive nature of this control system implementation. We will demonstrate 
that the SAE Architecture Analysis & Design Language (AADL) [SAE 2012] and its Error Model 
Annex are effective tools for 

 identifying causes and effects of failures (particularly those of a time-sensitive nature 

 verifying that proposed system changes address the problem 

 
1 See http://www.esterel-technologies.com/products/scade-suite/ for more information about SCADE. 
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SAE AADL is an architecture modeling language specifically designed for software-dependent 
systems with well-defined execution and interaction semantics. The Error Model Annex standard 
is designed to support fault analysis of AADL models.  

We will also demonstrate that a particular architecture decision—namely, the translation of the 
desired target position of the stepper motor into a sequence of position-change command by the 
stepper-motor controller—becomes a source of avoidable faults. We compare the original archi-
tecture to an alternative architecture design with reduced complexity and present arguments for 
increased confidence in the analytical evidence over existing practice and reduced need for evi-
dence for the alternative design. 

The approach used in this case study draws on a framework for software assurance and software 
quality improvement [Feiler 2012] in support of software-dependent, safety-critical system quali-
fication and certification. Software assurance is defined as “the level of confidence that software 
is free from vulnerabilities, either intentionally designed into the software or accidentally inserted 
at any time during its life cycle, and that the software functions in the intended manner” [CNSS 
2010]. In other words, it assures that a system meets the mission requirements specified for it and 
that hazards resulting in non-nominal behavior have been addressed through elimination or by de-
pendability requirements on a fault management architecture.  

This definition connects to several key elements of the framework for software assurance and 
software quality improvement: 

 Analysis of mission and dependability requirements associated with the system architecture: 
Studies of software-dependent, safety-critical systems have shown that 80% of all errors are 
not discovered until system integration, and 70% or more of those errors are related to re-
quirements and architecture design. Complexity in safety-critical software due to limited ar-
chitecture abstractions is a major contributor to high certification-related rework cost [Dvo-
rak 2009]. Requirements errors fall into the following categories: 33% omission, 24% 
incorrect, 21% incomplete, 6.3% ambiguous, 6.1% over specified, 4.7% inconsistent [Hayes 
2003]. At the same time, T text, diagram, and table-based requirements documentation and 
the use of Microsoft Word and Dynamic Object-Oriented Requirements System (DOORS) 
dominate the practice [FAA 2009a].  

We draw on a set of requirements engineering practices in the context of an architecture 
specification expressed in AADL [SAE 2012], as outlined in the FAA Requirement Engi-
neering Management Handbook [FAA 2009], demonstrated in goal-oriented requirements 
engineering (KAOS) [Lamsweerde 2003], and reflected in the draft Requirements Definition 
and Analysis Language (RDAL) Annex standard [Blouin 2011]. We also draw on guidance 
from the Virtual Upgrade Validation (VUV) method developed by the Software Engineering 
Institute (SEI) for modeling and predictive analysis of the impact of system changes on key 
quality attributes through the use of AADL [DeNiz 2012]. 

 Assessment and management of hazards on the safety, reliability, and security of the system: 
Traditional statistical reliability engineering methods do not carry over well to software. 
Eliminating these software design defects and mitigating residual software defects as hazards 
has to be the focus [Feiler 2012a]. Safety analysis requires a systemic approach to identify-
ing contributing hazards rather than a single failure as the root cause of an accident [Leveson 
2012]. 
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In this case study, we use version 2 (EMV2) of the Error Model Annex [SAE 2006],2 which 
supports established safety assessment practices such as SAE ARP 4761 [Delange 2014a]. 
We draw on two hazard impact analysis methods—Fault Propagation and Transformation 
Calculus (FPTC) [Paige 2009] and System Theoretic Process Analysis (STPA) [Leveson 
2012]—to systematically identify scenarios leading to contributing hazards from a safety 
perspective so they can be eliminated or managed. 

 Evidence in the form of architecture design analysis of operational qualities to complement 
testing: AADL is a key technology in System Architecture Virtual Integration (SAVI), an 
aerospace industry initiative to achieve early discovery of system-level problems through 
analysis of integrated architecture models [Redman 2010]. Such architectural analysis can 
identify design errors before a system is implemented, thereby reducing high-cost rework 
needed when such errors are not discovered until system integration. The feasibility of this 
approach was demonstrated on a multi-tier aircraft model [Feiler 2010]. Other applications 
of this approach include the analysis of a reference architecture for autonomous space plat-
forms and its instantiation for specific systems [Feiler 2009a] and the predictable integration 
of medical devices [Larson 2013]. 

We use existing analysis supported by AADL, such as end-to-end flow latency analysis, and 
augment them with formalized specification of the particular timing-related problem. 

 Structured argumentation to assure confidence in the presented evidence: Structured argu-
mentation methods (such as assurance cases [Kelly 1998, GSN 2011, ISO 2011]) explain, in 
a reviewable form, how various items of evidence combine to support claims about system 
properties. In the form of structured argument used in this report (a confidence map), reasons 
for doubting the truth of claims, the validity of evidence, and the soundness of inferences 
used in the argument are represented explicitly. As reasons for doubt, called defeaters, are 
removed, confidence in system claims increases [Goodenough 2013, Weinstock 2013]. 

We use the confidence map in developing an argument and in evaluating an argument’s 
strengths and weaknesses. 

Section 2 discusses the approach taken in this case study based on the above-mentioned frame-
work. It introduces the AADL architecture modeling, the EMV2 fault modeling, and the confi-
dence map notations. Section 3 is a brief overview of the SMS architecture and its essential func-
tional requirements. Section 4 presents the SMS in its operational environment, the architecture of 
SMS, and the detailed design specification of each SMS subsystem as an AADL model. In this 
section derived requirements on these subsystems are clearly identified and traced to the SMS 
system requirements. The original architecture is discussed, as are the two corrective solutions 
and the alternative design. In Section 5 we elaborate the architecture model into an architecture 
fault model identifying hazards and analyze their system impact. The section also discusses quan-
tified time-sensitive derived (safety) requirements that must be satisfied to eliminate the haz-
ards—as well as analysis and prototype implementation results to diagnose the specific missed-
step problem encountered in the SMS. Section 6 presents a confidence map for the original SMS 
architecture as well as for the design alternative. These maps show the evidence and inferences 

 
2  The SAE Error Model Annex EMV2 standard revision, led by one of the authors, will be published in spring 

2015. 



 

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  4 

needed to eliminate doubts about the adequacy of the SMS design. Finally, Section 7 provides 
conclusions. Three appendices provides additional supporting material. 
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 Approach, Concepts, and Notations 

In this section we present a short introduction to the approach we are taking for this case study. 
The approach combines practices for requirements engineering, architecture modeling and analy-
sis, hazard analysis from a safety-critical system perspective, and assurance cases for structured 
confidence arguments. Our approach is model based to support tool-based analysis and uses con-
cepts and notations of SAE AADL, the Error Model Annex EMV2, and confidence maps. 

2.1 Requirement Specification and Architecture Design 

We use AADL to model the system and its operational environment to clearly identify the system 
boundary, environmental assumptions, and system requirements. Some requirements for the sys-
tem may need to be refined into verifiable requirements. In the process of developing the next 
layer of architecture we decompose system requirements and allocate them to subsystems, illus-
trated in Figure 1. In some cases, a system-level requirement is met when all the sub-requirements 
are met. In other cases it is necessary to provide additional evidence at the system level. A collec-
tion of evidence in the form of review, analysis, and test results provides confidence that the re-
quirement is met. Subsets of verification results may be considered sufficient evidence. 

 

Figure 1: Architecture-Centric Requirements Decomposition 

An operational system, visualized in Figure 2, is defined as a set of behaviors by execution of 
functions to transform input into output using state, respecting constraints/controls, and requiring 
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resources to meet a defined mission in a given environment [AFIS 2010]. The requirements speci-
fication of a system consists of assumptions about the input, the incoming controls, the availabil-
ity of resources, guarantees made by the system on the produced output, requirements on the func-
tions executed in different states, and constraints on the state. Requirements are associated with a 
system in four forms:  

 requirements on the state and behavior of the system 

 assumptions about processing input, control input, and utilized resources 

 guarantees about output, control feedback, and resource usage 

 constraints on the implementation of the system (i.e., on the interaction between its parts) 

 

Figure 2: A System and Its Interface with Its Environment 

Requirements fall into two major categories: mission requirements and dependability require-
ments [Feiler 2012a].  

 Mission requirements focus on nominal system operation (i.e., functional, behavioral, and 
performance requirements).  

 Dependability requirements focus on non-nominal system operation due to failures and other 
hazardous conditions (i.e., safety, reliability, and security requirements).  

Requirement specification and architecture design of safety-critical systems is an iterative process 
in two ways. First, the architecture design is iteratively decomposed into subsystems, as men-
tioned earlier. Second, a nominal set of mission requirements and architecture design are exam-
ined by hazard and fault impact analysis for non-nominal conditions that result in safety and relia-
bility requirements and fault management functionality [McDermid 2007]. The fault management 
architecture introduces its own non-nominal conditions that must be addressed iteratively. 

In each phase of this approach we argue that the system requirement specification and design have 
sufficient quality. We provide rationale for  

 sufficient coverage of operational use cases by system requirements and sufficient evidence 
of requirement specification completeness and consistency   

 sufficient system requirement coverage by subsystem requirements  

 sufficient hazard coverage in terms of a fault ontology and their mitigation through safety, 
reliability, and security requirements on the fault management architecture  

 sufficient evidence of assumption/guarantee contract satisfaction by the system design   
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 sufficient evidence of requirement and constraint satisfaction by the next-level design and 
implementation 

This approach allows for compositional verification evidence through a combination of type and 
consistency checking of AADL models and Error Model specifications to meet standard con-
sistency rules, such as assumptions being met by guarantees, and verification of system specific 
requirements and constraints. 

To diagnose the problem of missed steps due to the time-sensitive nature of the SMS, we use fault 
impact analysis to determine all possible contributors to the step loss and identify those that are 
due to SMS design decisions that can be corrected. We then make the proposed corrections and 
proposed alternative design changes to the architecture model and update any affected require-
ments and hazard analysis to assess whether they have addressed the problem. 

We take advantage of the well-defined execution and interaction semantics in AADL to ab-
stractly, but precisely, specify the runtime behavior of the SMS to diagnose the time-sensitive 
failure behavior and evaluate how well proposed solutions address the problem.  

The VUV method [DeNiz 2012] provides guidance on how to model a system in AADL by map-
ping particular application system categories (e.g., a control system), into application patterns 
(e.g., a feedback loop), representing those patterns in AADL, and identifying relevant operational 
quality attributes, and expressing them as AADL properties on software and hardware compo-
nents, connections and deployment bindings, and end-to-end flows. VUV also provides guidance 
on how to focus modeling on those aspects of the system that are relevant to the proposed system 
change and its effect on quality attributes of interest. 

Some requirements are directly reflected in the model, while other requirements represent con-
straints or invariants on system properties or state. We use the RDAL notation to provide a re-
quirement identifier, description, and rationale, as well as traceability to stakeholders, and require-
ment refinement and decomposition for each requirement. In addition, the RDAL requirement 
declaration identifies the system or system element to which the requirement applies, as well as 
the property in the model that reflects the requirement. For example, guarantees and assumptions 
on exchanged data are specified as properties on data types—and requirements on the timing of 
the interaction are specified as properties on periodic and aperiodic threads with sampling and 
queuing ports. State behavior is modeled by modes, persistent data components, and detailed be-
havior specifications. Invariants and constraints are expressed in the RDAL requirement declara-
tion using a constraint notation (Lute3), which is then used to verify the design. Note that RDAL 
supports the association of verification activities with requirement declarations to represent an as-
surance plan.  

We model non-nominal conditions by annotating the architecture model with fault behavior using 
EMV2. Impact analysis of this architecture fault model leads to a set of assumptions that reflect 
the absence of hazards and a set of derived requirement declarations to reflect mitigation of the 
presence of hazards. 

 
3  Lute and its extension Resolute are constraint specification notations developed by Rockwell Collins for sup-

porting contract based assurance cases on AADL models. 
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2.2 AADL Concepts Supporting Architecture Design 

The AADL standard defines a number of component categories with specific semantics: system, 
device, bus, processor, memory, virtual bus, virtual processor, process, thread, thread group, 
data, subprogram, and subprogram group. AADL also defines a number of component features, 
that is, interaction points with other components. These are points for any kind of interaction: bus 
access for physical connections between hardware components; ports in the form of a sampling 
data port, a queuing event port, and an event data port for queued message communication; data 
access for references to shared (global) variables; and feature group for representing collections 
of interaction points. Data and event data ports include a specification of the type of data that are 
communicated. The interactions between the interaction points are represented by connections. 

An AADL thread has properties that indicate whether it has a periodic dispatch based on the clock 
or an aperiodic dispatch based on the arrival of events or messages, the period at which it exe-
cutes, the deadline for completion of one execution dispatch, and the best- and worst-case execu-
tion time. The execution and communication timing semantics are key to identifying the potential 
for timing errors in the SMS design. 

The specification of an AADL component may also include a mode state machine to represent op-
erational modes and flow specifications to model end-to-end flows across a system. These flow 
specifications are used in latency analysis to determine the responsiveness of the SMS to com-
mands. Since flow specification is part of the AADL, flow representations are integrated with the 
architecture representation and do not require separate models or modeling languages. For com-
plete coverage of AADL, see the AADL book by Feiler and Gluch [Feiler 2012]. 

AADL has a graphical and textual notation. The graphical symbols for the AADL components 
and features used in the SMS model are shown in Figure 3. Their use in specifying the SMS and 
its operational environment can be seen in Figure 8. Connections between the features of different 
components are shown as lines. The textual representation for the declaration of an AADL device 
called Sensor is shown in Figure 4. It specifies that the sensor has a single outgoing data port of 
data type Position providing a sampled sensor reading. 

 

Figure 3: AADL Graphical Symbols 
 
device Sensor 
features 
  SampledPosition: out data port Position; 
end Sensor; 

Figure 4: Textual AADL Example 

2.3 Architecture Fault Modeling and Analysis with EMV2  

We use EMV2 to represent and analyze the architecture fault model. EMV2 supports automated 
Failure Modes and Effects Analysis (FMEA) and reliability predictions [Hecht 2011] and the fault 
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propagation and transformation calculus (FPTC) for automated safety analysis [Paige 2009]. 
EMV2 also includes a fault propagation ontology that draws on research in failure mode assump-
tions and assumption coverage [Powell 1992], and on a fault model for redundant distributed sys-
tems [Walter 2003]. For further information on architecture fault modeling with EMV2 see 
Delange [Delange 2014, Delange 2014a]. 

EMV2 allows fault information to be attached to each component specification and implementa-
tion. EMV2 supports architecture fault modeling at three levels of abstraction:  

 error propagation: focus on fault sources in a system and their impact on other components 
or the operational environment through propagation. It allows for safety analysis in the form 
of hazard identification, fault impact analysis, and stochastic fault analysis. 

 component error behavior: focus on a system or component fault model identifying faults in 
a system (component), their manifestation as failure, the effect of incoming propagations, 
and conditions for outgoing propagation. It allows for fault tree analysis of a system stochas-
tic reliability and availability analysis of systems in terms of its components and their inter-
actions. 

 composite error behavior: focus on relating the fault model of system components to the ab-
stracted fault model of the system. It allows for scalable compositional fault analysis. 

In this case study we will primarily make use of the error propagation specification, in particular 
error source, incoming error propagation, and containment specifications reflecting assumptions, 
and outgoing error propagation and containment specifications reflecting guarantees.  

EMV2 introduces the concept of error type to characterize faults, failures, and propagations. Sets 
of error types are organized into error type libraries and are used to annotate error events, error 
states, and error propagations.  

For example, a valve can have faults of the types Leakage, StuckOpen, and StuckClosed. Error 
types can be grouped into type sets. For example the type set ValveErrors may be defined as 
{Leakage, StuckOpen, StuckClosed}. Error types can also be placed into a type hierarchy indicat-
ing that the subtypes cannot occur at the same time. For example, EarlyDelivery and LateDelivery 
are declared as subtypes of TimingError. By referring to the type set ValveErrors or the type Tim-
ingError we indicate that any of the element types can occur. 

Figure 5 illustrates the specification of an outgoing error propagation of type ValueError. The 
propagation paths to other components are determined by the connections and software to hard-
ware binding declarations in the AADL model. 

device Sensor 
features 
  SensedPosition: out data port Position; 
  annex EMV2 {** 
  use types ErrorLibrary; 
  error propagations 
    SensedPosition : out propagation {ValueError}; 
  end propagations; 
  **}; 
end Sensor; 

Figure 5: Textual AADL Error Model Example 
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EMV2 includes a set of predefined error types as starting point for systematic identification of dif-
ferent types of fault propagations – providing an error propagation ontology based on Powell, 
Walter, and Paige [Powell 1992, Walter 2003, Paige 2009]. They fall into four categories: service 
related, timing related, value related, and replication related. They are expressed in terms of an 
individual service item, a sequence of service items, or the whole service provided by a compo-
nent.  

Service-related error types include ServiceOmission (representing failure to provide service items, 
such as in a power loss), ServiceCommission (representing service items when not expected, such 
as unexpected acceleration), ItemOmission (representing a missing item, such as a lost message), 
and ItemCommission (representing an extra item, such as a spurious message). Users can define 
aliases for error types (e.g., we will use the alias NoPower for ServiceOmission to characterize the 
propagation resulting from a failed power supply). 

Value-related errors for individual items are OutOfRange, OutOfBounds, and UndetectableVal-
ueError. The set of these types is referred to as ValueError. Examples of sequence and service-
related value errors are StuckValue and OutOfCalibration.  

TimingError for an individual item can be EarlyDelivery and LateDelivery. RateError for a ser-
vice item sequence are LowRate, HighRate, and RateJitter.  

ReplicationError occurs in redundant systems and can be AsymmetricTiming, 
AsymmetricOmission, and AsymmetricValue. They allow for characterization of errors due to a 
Byzantine fault or errors occurring independently on replicated channels. 

We make use of the ability to define aliases for these error types to give them more meaningful 
names in the context of a specific component. For example, we define the alias MissingCommand 
for ItemOmission.  

We will use these error propagation types to specify the potential presence or absence of a hazard 
for SMS and for each of the SMS components by error propagation and containment declarations 
associated with each incoming and outgoing port and other interaction points to other components 
—as described in Section 5.1. The ontology and the explicit specification of error propagations 
and containments allow us to ensure that we have considered all possible hazards in the analysis. 

Finally, we draw on elements of the STPA by Leveson [Leveson 2012] to systematically identify 
scenarios leading to contributing hazards from a safety perspective so they can be eliminated or 
managed. She uses a feedback loop, shown in Figure 6, as a primary pattern.  

The hazards identified in the pattern are represented in EMV2 by error sources and incoming and 
outgoing propagations on ports. For example, in the context of the sensor no information maps 
into service or item omission, incorrect information maps into value error, and feedback delay 
maps into late delivery. The EMV2 ontology suggests a distinction of different types of value er-
rors, as well as consideration for early delivery, sequence, and rate errors.  
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Figure 6: Potential Hazard Sources in the Feedback Control Loop [Leveson 2012] 

2.4 Confidence Map Concepts and Notation 

A confidence map is a structure that explicitly shows the reasons for doubt relevant to a particular 
argument. A confidence map consists of claims, evidence (data), reasons for doubt (defeaters), 
and inference rules explaining  

 why evidence or a valid claim serves to eliminate a defeater  

 why the elimination of a doubt about the validity of a claim, evidence, or inference rule is 
regarded as justifying confidence in the validity of the claim, evidence, or rule  

A confidence map is useful both in developing an argument and in evaluating an argument’s 
strengths and weaknesses. 

A confidence map consists of a connected set of inferences having the form 

  if P then Q unless R, S, T, … 

The inference if P then Q is defeasible, meaning that the conclusion Q is subject to doubt based on 
additional information [MRL 2009]. In particular, in the above formulation, if any of R, S, or T 
are true, Q is either invalid or its validity is unknown. Because R, S, and T cast doubt on the va-
lidity of conclusion Q, they are called defeaters. The “…” is significant because in principle, addi-
tional defeaters can be identified at any time. In a confidence map, inference rules exist between 
claims, evidence, and defeaters.  

A confidence map is developed by identifying defeaters and then arguing (via inference rules) that 
the defeaters are false and that the falsity of the defeaters implies the validity of some otherwise 
defeasible claim, evidence, or inference rule. 
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In the defeasible reasoning literature [Pollock 2008, Prakken 2010] there are only three types of 
defeaters: rebutting, undermining, and undercutting. A rebutting defeater provides a counter-ex-
ample to a conclusion. An undermining defeater raises doubts about the validity of evidence. An 
undercutting defeater raises doubt about the sufficiency of an inference rule by specifying circum-
stances under which its conclusion is in doubt even when its premises are true. 

Table 1: Defeater Types 

De-
feater 

Attacks Form Mitigation 

Rebut-
ting 

Claim R, so claim Q is 
false 

Look for counter-examples and why they can’t occur 

Under-
cutting 

Infer-
ence rule

U, so conclusion Q 
can be true or false

Look for conditions under which the rule is insufficient and why those 
conditions don’t hold or what additional information is needed to 
make the rule sufficient 

Under-
mining 

Evidence M, so premise P is 
invalid 

Look for reasons the premise might be invalid and show those condi-
tions don’t hold 

As a simple example, we might argue “Tweety can fly because Tweety is a bird.” A confidence 
map for this argument will make explicit possible reasons for doubting that Tweety can fly (see 
Figure 7). The confidence map starts by identifying the top-level claim, “Tweety can fly” and then 
identifies characteristics of counter-examples to the claim, namely, “Unless Tweety is heavier 
than air, not capable of producing lift, and not being propelled by an external agent.” We seek evi-
dence eliminating this doubt about the claim. The map shows that someone has examined Tweety 
and determined that Tweety is a bird. The inference rule (IR3.2), “If X is a bird, X is capable of 
producing lift” is used to show how the evidence eliminates the counter-example. We also look 
for possible ways the evidence could be invalid (undermining defeaters). The map mentions the 
possibility that the examiner is incompetent; perhaps Tweety is actually a bat, in which case, our 
inference rule does not apply and we have no basis for concluding whether Tweety can fly. We 
would need to eliminate this defeater to have complete confidence in the conclusion about 
Tweety’s ability to fly. We also consider weaknesses in the inference rule, noting that if Tweety is 
a juvenile the rule is insufficient—Tweety might be able to fly and might not. Finally, there is an 
inference rule (IR2.2) that links the rebutting defeater (R2.1) to the claim that Tweety can fly. 

As these defeaters are eliminated (i.e., shown to be false), our confidence in the conclusion in-
creases. When all doubts have been eliminated, we say we have total confidence in the claim. 
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Figure 7: Confidence Map Example 

We use a graphical notation for confidence maps. In this map, the claim “Tweety can fly” is 
shown in a clear rectangular box. Claims are always stated as predicates, that is, they are either 
true or false. Defeaters are shown in rectangles with chopped-off corners; the color of the rectan-
gle indicates the type of defeater. Rebutting defeaters are shown in red. Evidence that Tweety is a 
bird serves to eliminate this rebutting defeater. The evidence is shown in a rounded clear rectan-
gle. An undermining defeater casting doubt on the validity of the evidence is shown in a light yel-
low. Inference rules are shown in a green rectangle. Undercutting defeaters (casting doubt on the 
sufficiency of the rule) are colored yellow-orange. In general, when an inference rule is indefeasi-
ble (has no undercutting defeaters) we do not show it. IR2.2 is an example of an indefeasible rule.  

The grey circle indicates there are no doubts about the element to which it is attached. For exam-
ple, the use of this element indicates we have decided that IR2.2 has no undercutting defeaters and 
similarly, that UM4.1 is assumed to be false without having to present any further evidence or ar-
gument. Such decisions can, of course, be challenged by reviewers of a map. 
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 Overview of the Stepper-Motor System  

The subject of the case study is an engine control system (ECS) for an aircraft engine. It is a feed-
back control system that manages the thrust of an engine. One of its functions is to adjust the fuel 
flow to the engine through a fuel valve. A stepper motor is used to change the position of the fuel 
valve. The stepper-motor control system operates open loop (i.e., there is no direct feedback on 
the successful execution of a step by the motor). The enclosing ECS feedback control loop can de-
tect a misalignment of the actual fuel-valve position with the expected position, but not at the 
granularity of individual steps. Since the functionality of the stepper-motor controller has been 
modeled and validated with SCADE without taking time into account, indications are that the 
problem of missed step execution is due to the time-sensitive nature of processing of the control 
system, specifically in the stepper-motor system (SMS), which consists of the stepper motor 
(SM_Motor), the actuator (SM_ACT), and the position control system (SM_PCS). 

The SMS is commanded to open the fuel valve in terms of a percentage with zero being closed 
and 100 being completely open. The stepper motor takes a known number of steps to move the 
fuel valve from a completely closed to a completely open position. The SMS is expected to reach 
the commanded position within a bounded time that is proportional to the distance between the 
current position and the desired position. At command completion the stepper motor is expected 
to have reached the commanded position closest to the requested opening percentage. 

The SMS may receive a new command from ECS before the previous command has been com-
pleted. SMS is expected to immediately respond to the new command (i.e., immediately moves 
the fuel valve to the most recent commanded position without first continuing to the previously 
commanded position). 

SM_PCS operates periodically at a rate of 25ms, converts the percentage into the desired position 
in terms of stepper motor steps (Steps), and commands the actuator to move the stepper motor a 
specified number of steps in the open or close direction. The maximum number of steps 
(MaxStepCount) to be commanded per frame is bounded to a maximum of 15 steps (i.e., the 
maximum number of steps the motor is able to perform within a frame of 25ms). To move the fuel 
valve as quickly as possible to the new position—that is, in a time roughly proportional4 to the 
number of steps required to move from the current position to the desired position—the position-
change command sequence passed to the actuator consists of a sequence of maximum step count 
commands followed by a single command with the remaining steps less or equal to the maximum 
step count. 

SM_PCS maintains a record of the desired position and the position to be reached through the 
most recent position-change command (commanded position). On completion of the position 
command, the desired position, commanded position, and actual position of the motor are ex-

 
4  We say “roughly proportional” because of poss ble delays in starting to move the valve and possible variations 

in the time it takes to move small distances rather than large distances. “Roughly proportional” is one way of 
capturing the informal specification “as quickly as possible.” 
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pected to be the same. A Homing command (to a fully closed position) is executed during initiali-
zation to synchronize the actual position with the initial desired and commanded position assumed 
by the SM_PCS. 
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 An AADL Model of the SMS Architecture 

In this section, we present an architecture specification of the SMS in three levels of abstraction 
using AADL and the Behavior Annex as modeling notation: 

 SMS as the system of interest in its operational context 

 the runtime architecture of the SMS as a set of interacting tasks 

 the detailed functionality of each task and its interaction with the other tasks 

We proceed by first presenting a model of SMS in its operational environment. This allows us to 
present requirements on SMS in the context of assumptions made by the SMS about the opera-
tional environment, and to examine the impact of potential failures in the operational environment 
on the SMS and vice versa. Next, we discuss the architecture model of the SMS implementation 
in terms of specifications of its components and their interactions. Emphasis is placed on captur-
ing the execution and communication semantics between the components in order to address time 
sensitivity issues within SMS. This is followed by a specification of SMS component states and 
functional behavior. This specification provides the basis for quantifying the conditions under 
which some commanded steps may be missed (see Section 5.3). Finally, we present the two pro-
posed fixes to SMS, and an alternative architecture design that greatly reduces the complexity of 
the position control system without significantly increasing the logic of the actuator. 

Requirements and assumptions for the SMS and its components become claims in the confidence 
map or may be recorded as contextual assumptions. 

4.1 The Operational Environment and Interface Specification of the SMS  

The operational environment of the SMS is illustrated in Figure 8. SMS is shown to be part of a 
larger engine control feedback loop consisting of an ECS, the SMS as the actuator for the fuel 
valve of the engine, and the engine with a built-in thrust sensor. In addition, the operational envi-
ronment consists of the computer hardware of the Electronic Control Unit (ECU) that executes the 
SMS software and a direct access memory that physically connects the ECU to the stepper motor 
interface unit, which resides within the SMS. Finally, the operational environment includes a 
power supply. For simplicity we use the AADL bus rather than an AADL memory component to 
represent direct access memory since it acts as a data transfer mechanism. For simplicity we as-
sume a single power supply provides power to the ECU and the stepper motor inside the SMS. 
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Figure 8: SMS in Its Operational Environment 

The SMS and ECS are represented as AADL system components. This allows us to decompose 
the SMS as necessary to elaborate its architecture. The ECU is represented as an AADL proces-
sor, and the device bus for transferring data between any sensor, the actuator, and the processor as 
an AADL bus. The power supply is also modeled as an AADL bus, in this case transferring elec-
tricity. The fuel valve is represented an AADL device. 

system SMS 
features 
  Desired_Position: in data port SM_Position.PercentOpen; 
  Mechanical_Control_Position: out feature; 
  DMA: requires bus access DirectAccessMemory; 
  Power: requires bus access Power_Supply.Volt28; 
end SMS; 

Figure 9: Textual SMS Interface Specification 

The interface specification of the SMS is shown textually in Figure 9. Incoming desired position 
commands are represented by a data port labeled Desired_Position with the data type 
SM_Position.PercentOpen. It specifies the requirement SMS-Req-1:  

The desired fuel-valve opening (i.e., the position of the stepper motor commanded by the ECS) 
shall be in terms of percent open with a value range of zero to MaxPercentOpen.  

MaxPercentOpen is defined as a property constant with value 100 in the property set 
PCSProperties. 

In a contract between the SMS and the ECS, this specification represents an assumption. This as-
sumption is verified against the guarantee made by ECS (i.e., the data type specification of its out-
going port). Details of the data types used in the data model for the SMS can be found in Appen-
dix A. It uses the Data Model Annex of AADL and specifies constraints on the data values as well 
as the measurement units to be used. 

The mechanical interface between the stepper motor in SMS and the fuel valve is represented as 
an abstract feature called Mechanical_Control_Position. Its data type represents requirement 
SMS-Req2: 
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The actual position of the stepper motor driving the valve shall be expressed in units of 
PercentOpen. 

SMS must ensure that the actual position is consistent with the commanded position. This leads to 
requirement SMS-Req-3: 

At startup completion and at command completion the actual position of the stepper motor 
must be the same as the position commanded by the ECS.  

This is expressed more formally as an invariant on the Desired_Position and the 
Mechanical_Control_Position using the Lute notation. This invariant must be verified on the 
model. 

SMS must complete commands in a timely fashion expressed as requirement SMS-Req-4: 

A desired position command shall be completed within T = MaxPosition * max(StepDuration). 

This requirement is expressed by a Latency property value associated with a flow specification 
from the SMS Desired_Position input port to the Mechanical_Control_Position output feature. 
The property constant MaxPosition specifies the maximum stepper motor position in units of 
Steps when fully opened, with zero as fully closed. StepDuration is specified as property constant 
with a time range according to a data sheet. End-to-end latency analysis will verify whether the 
SMS system implementation meets this response time requirement.  

SMS is expected to complete commands in proportion to the distance the stepper motor has to 
move from its current position to the desired position—expressed as requirement SMS-Req-5: 

The command duration shall be proportional to the distance between the current and desired 
position (i.e., not exceed)  
roundup ( | Desired_Position – Mechanical_Control_Position | * MaxStepCount/100) * Frame-
Duration).  

The Desired_Position and Mechanical_Control_Position values are in terms of PercentOpen, 
thus, must be converted into number of steps. MaxStepCount has a value 15 steps per frame and 
FrameDuration has a value 25ms—specified as property constants in the property set PCSProp-
erties. These two design decisions become derived requirements on the subcomponents of SMS. 

SMS is expected to immediately respond to a new desired position command from ECS—
requirement SMS-Req-6: 

There shall be a delay of no more than one frame before responding to the newly received com-
mand. 

This specific delay bound accommodates sampling delay of command input by SMS.  

SMS uses a device bus to transfer data from SM_PCS to SM_ACT, that is, it requires access to a 
bus of a particular type (SMS-Req-7): 

SMS shall access a bus of type DirectAccessMemory.  
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The requires bus access feature called DMA specified this requirement. Type matching along the 
bus access connection ensures that the correct bus type is physically connected to the SMS.  

SMS also has a requirement for externally supplied power (SMS-Req-8): 

SMS shall be supplied with 28-volt power. 

This requirement is specified by the requires bus access feature called Power indicating that 28-
volt power needs to be supplied by identifying the bus type Power_Supply.volt28. Type matching 
along the bus access connection ensures that the correct power supply is connected to the SMS. 

Note that these requirements are recorded through a combination of RDAL requirement declara-
tions and specification directly in the AADL model. 

4.2 The SMS Architecture 

The SMS consists of three components: digital position control software for the stepper motor 
SM_PCS, an actuator SM_ACT that translates commands from the position control software into 
electrical signals to a stepper motor, and the stepper motor SM_Motor.  

  

Figure 10: Details of Logical SM_PCS Architecture 

Figure 10 shows the SMS architecture as a graphical view.  

The position control system software SM_PCS is an AADL thread with a period of 25ms that re-
sides in an AADL process called SM_PCS_App. The figure also shows a health monitor 
(SM_HM) thread with a period of 1ms in the same process that has no logical interaction with 
SM_PCS. This indicates that the two threads share the same address space; thus, a coding error in 
one can potentially affect the other.  

A binding property in the operational environment of SMS, which contains the ECU, indicates 
that SM_PCS and SM_HM execute on the ECU. A Priority property indicates that SM_HM takes 
precedence over SM_PCS, thus, can affect the completion time of SM_PCS due to preemption. A 
Scheduling_Protocol property on the ECU indicates that preemptive scheduling is used. 

The SM_ACT and SM_Motor are modeled as AADL devices to reflect that they are separate 
pieces of hardware. When developing the confidence map in Section 6, we will treat the two as a 
single assembly, referred to as the fuel-valve stepper motor or as SM. 



 

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  20 

We proceed by elaborating the AADL specification of each of the subsystems of SMS, annotating 
them with properties and constraints to represent derived requirements that must be met to satisfy 
SMS requirements.  

4.2.1 The Position Control System Specification 

We elaborate the specification of SM_PCS as shown in Figure 11.  

thread SM_PCS 
features 
  Desired_Position: in data port SM_Position.Percentage; 
  Commanded_Position: out event data port SM_Position_Change { 
    Output_time => ([Time => Completion; Offset => 0 ns .. 0 ns;]); 
    Output_Rate => [Value_Range => 0.40 .. 40.0; Rate_Unit => PerSecond;]; 
 }; 
flows 
  flowpath: flow path Desired_Position -> Commanded_Position; 
properties 
  Dispatch_Protocol => Periodic; 
  Period => PCSProperties::FrameDuration; 
end SM_PCS; 

Figure 11: Textual SM_PCS Interface Specification 

SM_PCS inherits SMS-Req-1 on the incoming command from ECS on port Desired_Position 
(SM_PCS-Req-1). This is specified as a decomposition relationship between the requirement dec-
larations and is recorded in the AADL model by a connection declaration from the incoming ECS 
port to the appropriate incoming SM_PCS port. 

The data port Desired_Position for SM_PCS specifies that desired position commands are to be 
sampled with a period of 25ms (FrameDuration) (SM_PCS_Req-2). This derived requirement for 
SM_PCS contributes to meeting requirement SMS-Req-5.  

SM_PCS has a requirement to convert the Desired_Position, specified in PercentOpen into units 
of Steps by rounding to the nearest step (SM_PCS-Req-3)  

Desired_Position [Steps] = round(MaxPosition * Desired_Position [PercentOpen]/ 100). 

SM_PCS has a requirement to provide actuator commands in units of Steps within the range of 0 
to MaxStepCount, a direction of Open or Close, and a StepRate of 15 steps (MaxStepCount) 
(SM_PCS-Req-4). 

The data type SM_Position_Change on the outgoing event data port Commanded_Position speci-
fies the required data format for the position-change command (see Figure 37).  

The SM_PCS has the requirement SM_PCS-Req-5 to command the actuator to the desired posi-
tion. This derived requirement supports requirement SMS-Req-2. SM_PCS-Req-5 is expressed as 
the invariant that the sum of step counts in a position-change command sequence must be equal to 
the difference between the desired position and the commanded position at the time SM_PCS re-
ceived the desired position command. In addition, the step direction must be consistent (i.e., it 
must be Open if Desired_Position > Commanded_Position otherwise it must be Close).  
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The commanded position (Commanded_Position) is a SM_PCS internal state that represents its 
understanding of the stepper-motor position and reflects the position-change commands that have 
been issued (i.e., SM_PCS’ understanding of the current stepper-motor position) (see also Section 
4.3.1). It needs to be initialized correctly to meet SMS-Req-3. 

SM_PCS has requirement SM_PCS-Req-6 that all step counts in a position-change command se-
quence—except for the last non-zero one—must be equal to MaxStepCount. This requirement 
supports SMS-Req-4.  

SM_PCS has requirement SM_PCS-Req-7 that the command stream has a rate of 40 commands 
per second. This is specified by the Output_Time property value of Completion_Time for the out-
going Commanded_Position port.  

SM_PCS has requirement SM_PCS-Req-8 that once the desired position has been reached the po-
sition-change command will be issued with a step count of zero. This requirement is due to the 
fact that SM_ACT expects a command every period. This is reflected by the lower bound of Step-
Count of zero. In addition we have a Lute theorem identified in the requirement declaration that is 
used to validate this requirement on the behavior specification for SM-PCS. 

4.2.2 The Actuator Specification 
 
device SM_ACT  
features 
-- logical interface 
  Commanded_Position: in event data port SM_Position_Change { 
    Queue_Size => 0; 
    Overflow_Handling_Protocol => Error; 
  }; 
  SM_Command_Signals: feature group inverse of SM_Command_Signals; 
-- physical interface 
  DMA: requires bus access DirectAccessMemory; 
  Power: requires bus access Power_Supply.Volt28; 
flows 
  flowpath : flow path Commanded_Position -> SM_Command_Signals; 
properties  
  Dispatch_Protocol => Aperiodic; 
end SM_ACT; 

Figure 12: Actuator SM_ACT Interface Specification 

Figure 12 shows the interface specification for SM_ACT.  

SM_ACT has requirement SM_ACT-Req-1 to process position-change commands with a speci-
fied step count, direction, and a step rate. This requirement is specified by the data type on the in-
coming Commanded_Position event data port. 

SM_ACT has the requirement SM_ACT-Req-2 to immediately respond to commands from 
SM_PCS. This is specified in the AADL model by a Dispatch_Protocol property with the value 
Aperiodic for SM_ACT and by Commanded_Position as event data port to trigger the dispatch. 
The specification SM_ACT-Req-1 affects how end-to-end latency for the flow through SMS is 
calculated (SMS-Req-4). 

An assumption that SM_ACT is always ready to accept position-change commands from 
SM_PCS leads to requirement SM_ACT-Req-3 that Commanded_Position port does not buffer 
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incoming commands. This is specified by properties that the port has queue size of zero and an 
overflow handling protocol of Error. The overflow handling protocol of Error specifies that the 
previous command execution is aborted if it has not completed when the new command arrives. 
This requirement specification of not queuing incoming commands potentially affects the execu-
tion of all steps (SMS-Req-2). This specification must be verified to reflect the detailed behavior 
specification of SM_ACT (see Section 4.3). 

SM_ACT is responsible for translating the commanded number of steps into electrical signals to 
SM to perform one step at a time. The interface between the actuator and the stepper motor is 
modeled by a feature group called SM_Step_Command_Signals with separate signal ports for In-
crement_Step, Decrement_Step, and Goto_Home. SM_ACT has the requirement to correctly sup-
port this interface specification (SM_ACT-Req-4).  

SM_ACT has the requirement SM_ACT-Req-5 that within a frame the number of Increment_Step 
or Decrement_Step command signals must be equal to the commanded step count and must be 
consistent with the commanded direction. This requirement is expressed as a Lute theorem and 
contributes to the satisfaction of SMS-Req-2. 

SM_ACT includes a requirement that the commanded number of steps can be completed within 
one frame, that is, MaxStepCount * max(StepDuration) <= FrameDuration (SM_ACT-Req-6). 
This value is specified as Latency value on the flow specification and will be used to calculate 
end-to-end latency for commands through SMS (i.e., to determine whether SMS-Req-4 and SMS-
Req-5 are met).  

The SM_ACT interface specification also includes required bus access declarations for the direct 
access memory of a specific bus type (SM_ACT-Req-7) and the power supply with a specific 
voltage (SM_ACT-Req-8). AADL model type checking ensures use of the correct bus and power 
supply. 

4.2.3 The Stepper-Motor Specification 

The stepper motor SM_Motor is specified as a device with dispatch protocol of Aperiodic indicat-
ing that it reacts to commanding signals from the actuator.  

The interface with the actuator includes a signal from the stepper motor to indicate the completion 
of a step execution (Step_Completion event port in the feature group SM_Command_Signals). 
The detailed specification of the interface can be found in Figure 37 and is expected to be sup-
ported by SM_Motor (SM_Motor_Req-1). These command and response signals must match 
those of the outgoing feature group of SM_ACT. Type checking ensures matching assumption 
and guarantee. 

SM_Motor also includes the specification of the external interface to the fuel value (SM_Motor-
Req-2), which is inherited from SMS-Req-2. 

The execution time of the stepper motor is specified to be the time range StepDuration, that is, the 
length of time it takes for the motor to move one step at the specified rate of 15 steps per frame 
(SM_Motor-Req-3). This time range corresponds to the range of steps per second documented in 
the stepper-motor specification sheet. This requirement assumes that the actuator has been in-
structed to operate at the MaxStep step rate.  
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4.3 SMS Functional Design as State and Behavior 

In this section we elaborate the three components of SMS with a detailed functional design speci-
fication. Our focus is on state-based behavior and maintenance of state of the stepper motor by the 
control system (the combination of the position control system and the actuator). 

Within SMS we deal with three states: 

 the desired position of the stepper motor (i.e., the position requested by the ECS)  

 the commanded position (i.e., the position that the position control system and actuator have 
asked the stepper motor to be at)  

 the actual position of the stepper motor  

As we will show, the interaction timing between the position control system and the actuator can 
lead to a discrepancy in the desired position and the commanded position when execution of the 
desired position command has completed. We do this by identifying the assumption in the actua-
tor logic that all step commands have been issued to the stepper motor before the next command 
arrives. We are led to this potential issue by considering early command arrival as a potential haz-
ard contributor. 

4.3.1 The Position Control System State and Behavior 

The position controller SM_PCS maintains two persistent state variables: the 
DesiredPositionState holding the most recently received DesiredPosition to be reached and the 
CommandedPositionState representing the position it has commanded the actuator to reach (i.e., 
the understanding by SM_PCS of the current stepper motor position). They are represented in the 
AADL model as persistent data subcomponents of the SM_PCS.impl thread implementation, as 
shown in Figure 13. We have the requirement that when the position-change command sequence 
has been completed the desired position and commanded position must be the same (SM_PCS-
Req-5). SM_PCS must correctly translate the desired position command into the position-change 
command sequence (i.e., meet SM_ACT-Req-4, SM_ACT-Req-5, and SM_ACT-Req-6). 

We use the Behavior Annex of AADL [SAE 2011] to specify the details of the functional behav-
ior of the Position_Controller (see Figure 13). This specification has a single state that triggers a 
transition to itself on every dispatch. The transition action indicates that at every dispatch, if a 
new Desired_Position (command) value has been received, its range is checked. If the value is 
within range, it is converted to units of steps and recorded as DesiredPositionState. If it is not 
within range, the command is ignored. This provides runtime assurance that the desired position is 
in range (inherited requirement SMS-Req-1) (i.e., resilience to out-of-range values from the 
sender or any value corruption during transfer). 

The stepper motor can execute steps at a specified rate with a maximum rate determined by the 
physical characteristics of the stepper motor. A fixed rate of 15 steps per frame (SPF) was chosen 
in the baseline design to minimize functional complexity and mechanical acceleration lag. Since 
the interface between SM_PCS and SM_ACT includes step rate as a parameter (see data type 
SM_Position_Change), SM_PCS is expected to set the step rate to 15 SPF—reflected in the prop-
erty constant MaxStepCount. This design decision is specified by limiting the step rate field val-
ues in SM_Position_Change to MaxStepCount. Hence, when the motor is requested to move 
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fewer than MaxStepCount steps (e.g., four steps), it executes the steps at the 15 SPF rate and then 
is idle until the end of the frame.  

SM_PCS compares the desired position and commanded position states to determine whether the 
stepper motor needs to Open or Close, and how many steps must be performed. The Com-
mandedPositionState is then updated to reflect the commanded change in position toward the de-
sired position. By doing so, SM_PCS assumes that the commanded number of steps will actually 
be executed by the stepper motor (i.e., it relies on SM_ACT and SM_Motor to not introduce a 
missed step). 

The behavior specification indicates that the maximum step count is used to reach the desired po-
sition until the position difference is fewer than 15 steps. At that point the actual difference value 
is used as the step count (necessary to meet SM_PCS-Req-6).  

The SM_PCS responds immediately to a new desired target position by updating the 
DesiredPositionState with any new incoming Desired_Position value every 25ms (necessary to 
meet SM_PCS-Req-2 contributing to SMS-Req-5).  

thread implementation SM_PCS.impl 
subcomponents 
  DesiredPositionState: data SM_Position.Steps; 
  CommandedPositionState: data SM_Position.Steps; 
annex Behavior_Specification {** 
  variables 
    distance: Base_Types::Integer; 
    stepcount: Base_Types::Integer; 
  states  
   Ready: initial complete state; 
  transitions 
    Ready -[on dispatch]-> Ready { -- on every 25ms dispatch begin action 
    -- check for out of range if a new command has been received 
    if ((Desired_Position'fresh = true) and (Desired_Position >= 0 ) 
        and ( Desired_Position <= PCSProperties::MaxPercent)){ 
    -- convert from PercentOpen to Steps 
      DesirePositionState := PCSProperties::MaxPosition*Desired_Position/100     
    } end if; 
    distance := DesiredPositionState - CommandedPositionState ; 
    if (abs(distance)> PCSProperties::MaxStepCount) 
      stepcount := PCSProperties::MaxStepCount  
    else 
      stepcount := abs(distance) 
    end if; 
    Commanded_Position.Step_Rate := PCSProperties::MaxStepCount; 
    if (distance>0){ 
      Commanded_Position.Step_Direction := Open; 
      Commanded_Position.Step_Count := stepcount; 
      CommandedPositionState := CommandedPositionState + stepcount 
    } else { 
    -- this case handles steps in the close direction as well as zero steps 
    -- note that zero step commands are expected to be issued  
      Commanded_Position.Step_Direction = Close; 
      Commanded_Position.Step_Count = stepcount; 
      CommandedPositionState = CommandedPositionState - stepcount 
    } end if; 
    Commanded_Position!; 
  }; -- end action 
**}; 
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end SM_PCS.impl; 

Figure 13: Position Control System Behavior Specification 

4.3.2 The Actuator State and Behavior 

The stepper motor actuator also maintains system state in the form of a persistent StepsToDo state 
represented by a persistent data subcomponent of type SM_Position_Change.  

Figure 14 shows the behavior specification for SM_ACT. The behavior is characterized by three 
states:  

 Ready, indicating that it is waiting for a command from SM_PCS  

 WaitOnStep to indicate that the execution of a step by SM is in progress  

 Decide as an intermediate state dealing with the decision of whether there are steps left to be 
executed by SM.  

Arrival of a Commanded_Position is handled by the Ready state and the WaitOnStep state (first 
two transitions in Figure 14).  StepsToDo is set to the newly arrived value. An assumption is made 
that the count value at that time is zero, that is, all steps from the previous command have been 
issued (SM_ACT-Req-6). It is a necessary condition for SM_ACT-Req-2 and SM_ACT-Req- 4. 

The first transition out of the Decide state determines that no step has to be taken. The other tran-
sition out of the Decide state specifies whether an Increment_Step or Decrement_Step signal is to 
be issued according to the specified Direction and updates the step count.  

The transition out of the WaitOnStep state triggered by the arrival of the step completion signal 
leads to the Decide state, which determines whether additional steps are to be performed. A 
timeout may compensate for a missing completion signal from the motor. 

device implementation SM_Act.impl 
subcomponents 
  StepsToDo: data SM_Position_Change.DataRecord; 
annex Behavior_Specification {** 
  states 
    Ready: initial state; 
    WaitOnStep: complete state; 
    Decide: state; 
  transitions 
    Ready -[on dispatch Commanded_Position]-> Decide { 
      StepsToDo := Commanded_Position  
    }; 
    WaitOnStep -[on dispatch Commanded_Position]-> WaitOnStep { 
      StepsToDo := Commanded_Position 
    }; 
    WaitOnStep -[on dispatch DoStempCmd.StepDone]-> Decide ; 
    Decide -[StepsToDo.Step_Count = 0]-> Ready ; 
    Decide -[StepsToDo.Step_Count > 0]-> WaitOnStep { 
      StepsToDo.Step_Count :=  StepsToDo.Step_Count - 1; 
      if (StepsToDo.Step_Direction = Open) 
        SM_Command_Signals.SM_Cmd.DoIncrement!(StepsToDo.Step_Rate); 
      else  
        SM_Command_Signals.SM_Cmd.DoDecrement!(StepsToDo.Step_Rate); 
      end if 
    }; 
**}; 
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end SM_Act.impl; 

Figure 14: Stepper-Motor Actuator Behavior Specification 

4.3.3 The Stepper-Motor State and Behavior 

The stepper motor SM has a persistent state as well, represented by the data subcomponent 
ActualPositionState in the SM device implementation. It represents the mechanical position of the 
stepper motor. The state is incremented or decremented according to the arriving command signal 
and the mechanical execution of the motor step. 

4.3.4 SMS Design Constraints 

In order for the SMS to operate correctly, the DesiredPositionState of SM_PCS, 
CommandedPositionState of SM_PCS, and ActualPositionState of SM must be the same when the 
SMS is not actively executing steps. This design constraint is declared as part of an RDAL 
requirement declaration, and supports the requirement SMS-Req-3 using SM_PCS-Req-5 and 
SM_ACT-Req-4. 

During initialization of the SMS, the Homing command brings the actual state of the stepper mo-
tor to a known state, namely the zero position.  

4.4 Three Proposed Corrections  

In order to correct the missed step problem in the stepper motor control system, two corrections 
have been proposed by the developers. The first correction proposes to minimize variation in the 
time SM_PCS send the position-change command to SM_ACT. The second correction proposes 
to introduce buffering of position-change commands as they arrive at SM_ACT. In this section we 
describe the changes to the AADL model to reflect each of these corrections. We will also exam-
ine a third correction in the form of an architecture design change, in which SM_PCS does not is-
sue position-change commands to the actuator, but passes on the desired position instead after val-
idating that the command received from ECS is acceptable. We will show that this design 
alternative eliminates several design hazards and results in a more robust design without signifi-
cantly increasing the functionality of the actuator. 

4.4.1 The Fixed Command Send Time Solution 

In this proposal SM_PCS sends the sequence of position-change commands at a fixed offset of 
13ms from the beginning of a 25ms time frame—a new requirement on SM_PCS (SM_PCS-Req-
9). The rationale is that this will minimize variation in inter-arrival time of the commands at the 
actuator. 

We document this change in the SMS architecture model by changing the Output_Time property 
on the Commanded_Position port of SM_PCS to be the deadline of SM_PCS. Furthermore, we 
set the deadline for SM_PCS to 13ms, since a delay until the end of the frame was considered to 
be too long.  

This specified communication time behavior can be implemented in two ways:  

 by the runtime system—In addition to dispatching tasks at specified times the runtime sys-
tem can initiate communication based on the specification in the AADL model. This solution 
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avoids context switching overhead and results in negligible variation in send time. No further 
changes to the model are necessary. 

 by an application I/O thread—The application thread is scheduled at the same 25ms period 
as SM_PCS, but with an offset dispatch time of 13ms. Note that in this case we have context 
switching overhead, and this thread is immediately preempted by the SM_HM thread run-
ning at a period of 1ms.  

4.4.2 The Buffered Position-Change Command Solution 

In this proposal the actuator will buffer incoming position-change commands until it has com-
pleted the execution of the previous command—a revision to requirement (SM_ACT-Req-2-rev). 
A buffer size of one was deemed sufficient since SM_PCS only sends one command per 25ms 
frame—an assumption that must be verified. 

We document this change in the SMS architecture model by changing the queue size of the 
Commanded_Position port for SM_ACT to be of size 1.  

The implementation specification of SM_ACT changes as follows. SM_ACT does not respond to 
the arrival of a command until it has reached the Ready state (i.e., we remove the transition out of 
WaitOnStep triggered by the port Commanded_Position).  

4.4.3 The Desired Position Actuator Commanding Solution 

In this solution the desired position is immediately passed on to the actuator after it has been con-
verted from PrecentOpen units to Steps units and validated as an acceptable position to be com-
manded.  

This requires a change in the interface specification of SM_PCS Commanded_Position and 
SM_ACT Commanded_Position to the data type SM_Position. 

The behavior specification of SM_PCS is simplified to perform range checking of the incoming 
desired position value and conversion to Steps. 

The complexity of the actuator functional behavior does not increase significantly compared to 
the original behavior logic (see Figure 14) and is shown in Figure 15.  

The StepsToDo state variable is replaced by the DesiredPositionState and the 
CommandedPositionState variables. Instead of comparing the step count against zero and then 
issuing an increment or decrement command signal to the motor depending on the direction flag, 
SM_ACT now compares the most recently received desired position against the last commanded 
position and issues an increment or decrement command depending on whether the desired 
position is greater or less than the commanded position. 

As we will see in the architecture fault analysis, this design is able to tolerate transient message 
corruption or loss by the direct access memory. The original design was sensitive to message cor-
ruption or loss. 

device implementation SM_Act_SMPos.impl 
subcomponents 
  DesiredPositionState: data SM_Position.Steps; 
  CommandedPositionState: data SM_Position.Steps; 
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annex Behavior_Specification {** 
states 
  Ready: initial complete state; 
    WaitOnStep: complete state; 
    Decide: state; 
transitions 
  Ready -[on dispatch Commanded_Position]-> Decide { 
    DesiredPositionState := Commanded_Position   
  }; 
  WaitOnStep -[on dispatch Commanded_Position]-> WaitOnStep { 
    DesiredPositionState := Commanded_Position   
  }; 
  WaitOnStep -[on dispatch DoStempCmd.StepDone]-> Decide ; 
  Decide -[DesiredPositionState = CommandedPositionState]-> Ready ; 
  Decide -[ DesiredPositionState != CommandedPositionState]-> WaitOnStep { 
    if (CommandedPositionState > DesiredPositionState) { 
      CommandedPositionState :=  CommandedPositionState - 1; 
      SM_Command_Signals.SM_Cmd.Decrement_Step!(PCSProperties::MaxStepCount) 
    } elsif (CommandedPositionState < DesiredPositionState) { 
      CommandedPositionState :=  CommandedPositionState + 1; 
      SM_Command_Signals.SM_Cmd.Increment_Step!(PCSProperties::MaxStepCount) 
    } end if 
  }; 
**}; 
end SM_Act_SMPos.impl; 

Figure 15: Position-Commanded Actuator Behavior 
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 Fault Analysis of the SMS Architecture 

In this section we use architecture fault modeling to analyze the SMS architecture for software- 
induced hazards. In particular, we use fault impact analysis to identify all possible error sources in 
the original SMS design that can result in a missed step—a violation of SMS-Req-3. Using the 
fault propagation ontology of EMV2 we systematically identify potential sources of hazards and 
determine whether they can be assumed to be eliminated (e.g., satisfaction of SMS-Req-6) or 
whether they lead to additional (safety) requirements with respect to timing.  

We annotate the SMS components and the components of the operational environment with error 
source and propagation information. We annotate the original design, the two proposed correc-
tions, and the design alternative. We then analyze the resulting architecture fault models for fault 
impact and unhandled faults. The analysis will determine contributors to missed steps in the SMS 
and identify those that are avoidable in the design of the SMS. The analysis also gives us insight 
into the resilience of the SMS design to propagations from the operational environment. Finally, 
we quantify the failure conditions that can result in the missed step or delayed response to new 
commands, and derive safety requirements that must be met in order for the failure condition not 
to occur.  

5.1 Hazards and Their Impact on the SMS Architecture 

We annotate the AADL architecture with potential error sources and error propagations for each 
of the SMS components and components in the operational environment. We utilize the fault 
propagation ontology of EMV2, a library of pre-declared error propagation types, as a checklist to 
ensure we have considered all possible effects of failure conditions on other components.  

In a first step, we focus on malfunctions of each component due to a defect in the component. The 
malfunction can lead to a violation of a requirement or a non-functional component. The effects 
of such a malfunction are observable as error propagations. These become possible defeaters in 
the confidence map. 

We examine each of the outgoing ports and determine whether the component is the source of an 
error propagation of the error type’s timing, rate, value, and omission. We use error type aliases 
for the error types to provide more meaningful names in the context of the component for which 
error sources and propagations are specified. For example, MissingCommand is used as an alias 
for ItemOmission. 

We specify potential error sources and assumptions about their absence in SMS, its components, 
and the elements of the operational environment. We record error sources for each component 
within SMS by declaring out propagations for specific error types, and by identifying them as er-
ror sources via error source declarations.  

In a second step, we specify how each system component deals with incoming error propaga-
tions—that is, whether a particular type of incoming error propagation is passed on as propagation 
of the same type, as propagation of a different type, and whether the component becomes a sink 
for the propagated error type. In this case study we infer these error flow specifications from the 
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detailed design. In a new development these error flow specifications would become additional 
requirements on the system design. 

Since the design of the SMS components has been specified and verified in SCADE, we assume 
that the functionality is correctly implemented (i.e., that value errors will not occur). We docu-
ment this by an appropriate error containment declaration using the not out propagation construct 
of EMV2. 

We also specify the fault model for SMS as a whole. This specification represents an abstraction 
of the error propagation behavior of the SMS implementation in terms of SM_PCS, SM_ACT, 
and SM_Motor. Such an abstracted fault model specification has several benefits. It allows vari-
ous forms of safety analysis to be performed compositionally one layer at a time. For example, the 
error propagation guarantees and assumptions of SMS as a whole can be checked against those of 
the components in the operational environment separately from checking that the SMS implemen-
tation is consistent with the abstracted fault model of SMS. It also reflects a fault management 
strategy of a system (e.g., fail silent/fail stop) and a consistency check between the abstraction and 
the implementation ensures that the strategy is realized correctly.  

5.1.1 The Position Control System SM_PCS Architecture Fault Model 

SM_PCS is a potential source of timing and rate errors. Since SM_PCS sends the position-change 
command at completion time and completion time is variable, it can be a source of timing errors 
(i.e., early and late delivery). This is documented in the AADL model by declaring an outgoing 
error propagation of type TimingError, whose subtypes are EarlyDelivery and LateDelivery on 
the Commanded_Position port, and by identifying it as an error source (see the timingsrc error 
source declaration in Figure 16).   

We also consider SM_PCS to be a source of RateError. First, the SM_PCS thread may get dis-
patched at a rate slower than the specified periodic rate, for example, due to a slow-running clock 
in the processor. Second, the receiving task (SM_ACT) operates asynchronously from the sender 
thread (SM_PCS) and is driven by the arrival of commands. Its maximum command execution 
rate is determined by the time it takes to execute the commanded steps by the stepper motor. This 
rate can potentially be lower than the rate of SM_PCS.  

To address requirement SMS-Req-6 to immediately respond to a new command we use the error 
type DelayedService with the alias DelayedResponse. We specify that we do not expect SMS and 
any of its components to delay execution of a new command by declaring that SM_PCS will not 
be propagating this error type.  

We assume that SM_PCS is not a source of value errors. In particular we assume that the step 
count value for the commanded position change is not out of range (expressed by the alias 
StepCountOutOfRange for the error type OutOfRange) and the resulting commanded position is 
not out of bounds (expressed by the alias ResultingPositionOutOfRange for the error type 
OutOfBounds). This is expressed by the not out propagation declaration on 
Commanded_Position. 

thread SM_PCS 
features 
  Desired_Position: in data port SM_Position.PercentOpen; 
  Commanded_Position: out event data port SM_Position_Change; 
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annex EMV2 {** 
use types SMErrorTypes; 
error propagations 
-- outgoing errors  
  Commanded_Position : out propagation {TimingError, RateError,  
                           MissingCommand, NoCommandSequence}; 
-- errors not propagated  
  Commanded_Position: not out propagation {StepCountOutOfRange,  
                  ResultingPositionOutOfRange, DelayedReponse}; 
-- incoming errors  
  Desired_Position : in propagation {MissingCommand, NoCommandSequence,  
    OutOfRange}; 
-- errors not propagated in 
  Desired_Position : not in propagation {DelayedReponse}; 
-- impact of processor 
  Processor: in propagation {NoService, CompletionTiming};  
flows 
-- error sources 
  timingsrc: error source Commanded_Position {TimingError}; 
  ratesrc: error source Commanded_Position {RateError}; 
-- error pass through 
  omissionpPassthrough: error path Desired_Position{MissingCommand,  
    NoCommandSequence} -> Commanded_Position; 
-- map out of range into a missing command 
  outOfRangeHandling: error path Desired_Position{OutOfRange} ->  
    Commanded_Position {MissingCommand}; 
-- map ECU error propagation into no commands 
  resourceserviceimpact: error path processor{NoService} ->  
    Commanded_Position{NoCommandSequence}; 
end propagations; 
**}; 
end SM_PCS; 

Figure 16: Fault Model Specification of the Position Control System SM_PCS 

We specify the following SM_PCS fault model behavior for dealing with incoming error propaga-
tions: 

 SM_PCS does not assume incoming desired position commands are always within range. 
The incoming error propagation of type OutOfRange is mapped into an outgoing 
MissingCommand (alias for ItemOmission) by the error path declaration 
outOfRangeHandling. This specification results in a requirement that SM_PCS checks the 
range of the incoming desired position and ignores the command if out of range. This makes 
SM_PCS robust to out-of-range errors even though ECS not expected to intentionally 
propagate such errors.  

 Any incoming MissingCommand or NoCommandSequence (alias for ServiceOmission) from 
the ECS is passed through as outgoing propagations of the same type (see error path 
omissionPassthrough).  

 Incoming NoService error propagations from the processor SM_PCS is bound to are mapped 
into NoCommandSequence by the error path resourceserviceimpact  

5.1.2 The Actuator SM_ACT Architecture Fault Model 

The actuator SM_ACT fault model specifies the following fault behavior (Figure 17): 

 SM_ACT assumes StepCountOutOfRange and ResultingPositionOutOfRange errors will not 
occur as incoming propagation on the CommandedPosition port.  
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 The functional logic of SM_ACT is assumed to be current under nominal conditions (i.e., 
has been verified by SCADE). In other words, SM_ACT is an error source declaration for 
the MissingStepCommand out propagations. 

 SM_ACT can have a mechanical failure—it can be the source of a NoCommandSequence 
out propagation (alias for ServiceOmission)—expressed by the error source declaration 
mechanicalFailure. 

 EarlyDelivery beyond a certain time limit will result in SM_ACT aborting the previous posi-
tion-change command by overriding a non-zero step count. This is expressed by the error 
path declaration EarlyDeliveryImpact mapping EarlyDelivery into MissingStepCommand. 
As we will see from the analysis, this is the case if the new command arrives before the last 
step command has been issued by the actuator. 

 Incoming LateDelivery results in a minor delay in stepper-motor response, indicated by the 
error path LateDeliveryImpact to outgoing error propagation SlowResponse (alias for 
LateDelivery).  

 SM_ACT will immediately respond to a new command (i.e., we assume there is no 
DelayedResponse error source and there is no incoming DelayedResponse propagation). 

 An incoming HighRate error results in an outgoing MissingStepCommand error propagation 
—expressed by the error path Rateimpacthi. This can occur when commands arrive faster 
than SM_ACT can process them, which has the same effect as early delivery.  

 An incoming LowRate error results in a minor delay in stepper-motor response, indicated by 
the outgoing error propagation SlowResponse—expressed by the error path Rateimpactlo. 

 SM_ACT can fail to provide a command sequence to the stepper motor when power fails to 
be supplied. This is expressed by the error path declaration nopowerflow from the incoming 
error propagation Power. 

device SM_Actuator  
features 
features 
-- logical interface 
  CommandedPosition: in event data port SM_Position_Change { 
 Queue_Size => 0; 
 Overflow_Handling_Protocol => Error; 
  }; 
  SM_Command_Signals: feature group inverse of SM_Command_Signals; 
-- physical interface 
  DMA: requires bus access DirectAccessMemory; 
  Power: requires bus access Power_Supply.Volt28; 
flows 
 flowpath : flow path CommandedPosition -> SM_Command_Signals; 
properties  
 Dispatch_Protocol => Aperiodic; 
annex EMV2 {** 
use types SMErrorTypes; 
error propagations 
  Commanded_Position : in propagation { MissingCommand, NoCommandSequence,  
    TimingError, RateError}; 
  Commanded_Position : not in propagation { StepCountOutOfRange,  
             ResultingPositionOutOfRange, DelayedResponse}; 
 
  SM_Command_Signals.SM_Cmd : out propagation { MissingStepCommand,                        
             NoCommandSequence, SlowResponse}; 
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  SM_Command_Signals.SM_Cmd : not out propagation {DelayedResponse}; 
  SM_Command_Signals.Step_Completion: not in propagation {CompletionOmission}; 
  Power : in propagation {NoService}; 
flows 
  omissionPath1: error path CommandedPosition{ MissingCommand, NoCommandSequence} -
>  SM_Command_Signals.SM_Cmd(MissedStep); 
   
  LateDeliveryImpact: error path CommandedPosition{ LateDelivery} ->  
SM_Command_Signals.SM_Cmd(SlowResponse); 
 
  EarlyDeliveryImpact: error path CommandedPosition{ EarlyDelivery} ->  
SM_Command_Signals.SM_Cmd(MissingStepCommand); 
 
  Rateimpacthi: error path CommandedPosition{ HighRate} ->  
SM_Command_Signals.SM_Cmd(MissingStepCommand); 
   
  Rateimpactlo: error path CommandedPosition{ LowRate} ->  
SM_Command_Signals.SM_Cmd(SlowResponse); 
 
  MechanicalFailure: error source  
    SM_Command_Signals.SM_Cmd {NoCommandSequence} when {ActuatorFailure}; 
  nopowerflow: error path Power ->  
      SM_Command_Signals.SM_Cmd {NoCommandSequence}; 
end propagations; 
**}; 
end SM_Actuator; 

Figure 17: Fault Model Specification of the Actuator SM_ACT 

5.1.3 The Stepper-Motor SM_Motor Architecture Fault Model 

The actuator SM_Motor fault model specifies its fault behavior as shown in Figure 18: 

 SM_Motor can be the source of a mechanical stepper-motor failure—expressed by the error 
source declaration SMFailure. This failure becomes visible as NoSteps through the 
Mechanical_Control_Position feature.  

 SM_Motor passes on an incoming MissingStepCommand as MissedStep (both aliases for 
ItemOmission). 

 SM_Motor passes on NoCommandSequence as NoSteps (both aliases for ServiceOmission). 

 SM_Motor passes on SlowResponse as SlowResponse and assumes DelayedResponse to a 
new command will not occur. 

 Loss of power to SM_Motor turns into NoSteps. 
device Stepper_Motor 
features 
  SM_Command_Signals: feature group SM_Command_Signals; 
  Mechanical_Control_Position: out feature ; 
  Power: requires bus access Power_Supply.Volt28; 
flows 
  flowsink: flow sink SM_Command_Signals{Latency => 1 ms .. 1 ms;}; 
properties 
  Dispatch_Protocol => Aperiodic; 
  Compute_Execution_Time => PCSProperties::StepDuration; 
annex EMV2 {** 
use types SMErrorTypes; 
error propagations 
  SM_Command_Signals.SM_Cmd : in propagation {MissingStepCommand,  
     NoCommandSequence, SlowResponse}; 
  SM_Command_Signals.SM_Cmd : not in propagation {DelayedResponse}; 
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  SM_Command_Signals.Step_Completion: not out propagation {CompletionOmission}; 
  Power: in propagation{NoService}; 
  Mechanical_Control_Position:  out propagation  
    {MissedStep, NoSteps, SlowResponse}; 
  Mechanical_Control_Position:  not out propagation {DelayedResponse}; 
flows 
  SMfailure: error source Mechanical_Control_Position{NoSteps}  
    when {StepperMotorFailure}; 
  cmdimpact1: error path SM_Command_Signals.SM_Cmd{MissingStepCommand}  
    -> Mechanical_Control_Position{MissedStep}; 
  cmdimpact2: error path SM_Command_Signals.SM_Cmd{NoCommandSequence}  
    -> Mechanical_Control_Position{NoSteps}; 
 cmdlate1: error path SM_Command_Signals.SM_Cmd{SlowResponse}  
    -> Mechanical_Control_Position{SlowResponse}; 
 nopower: error path Power{NoService} -> Mechanical_Control_Position{NoSteps}; 
end propagations; 
**}; 
end Stepper_Motor; 

Figure 18: Fault Model Specification of the Stepper Motor SM_Motor 

5.1.4 The Engine Control System ECS Architecture Fault Model 

The engine control system ECS fault model specifies the following fault behavior (Figure 19): 

 ECS can be the source of NoCommandSequence and MissingCommand propagations due to 
ECS failure. 

 ECS is expected to provide desired position commands within range position values (i.e., 
does not propagate OutOfRange position values). 

The ECS determines the desired percentage of fuel-valve opening to achieve desired fuel flow and 
thrust of an engine. We specify that the desired position will be in range, and that an ECS failure 
will result in lack of desired position commands (MissingCommand and NoCommandSequence).  

system EngineControlSystem 
features 
  desiredThrust: in data port ; 
  thrustReading: in data port ; 
  valvePosition: out data port SM_Position; 
flows 
  flowsource : flow source valvePosition{Latency => 1 ms .. 1 ms;}; 
annex EMV2{** 
use types SMErrorTypes; 
error propagations 
  valvePosition: out propagation {NoCommandSequence, MissingCommand}; 
  valvePosition: not out propagation {OutOfRange}; 
flows 
  ecsfailure: error source valvePosition{NoCommandSequence, MissingCommand}  
    when {ECSFailure}; 
end propagations; 
**};  
end EngineControlSystem; 

Figure 19: Fault Model Specification of ECS 
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5.1.5 The ECU Architecture Fault Model 

The ECU can fail, that is, it is an error source of type NoService (alias for ServiceOmission). The 
ECU can propagate errors to any software component bound to it, specified by an outgoing propa-
gation declaration for bindings. NoService is also propagated to the direct access memory con-
nected to the ECU. The ECU is affected by PowerLoss from the power supply, which is passed on 
as a NoService error propagation to the software units bound to the ECU.  

5.1.6 The Direct Access Memory Architecture Fault Model 

The architecture fault model of the device bus is shown in Figure 20. The direct access memory 
can be the source of MessageLoss (alias of ItemOmission) and MessageCorruption (alias for 
ValueError) to any connection bound to the bus. This is declared by the error source declaration 
Commerror for the bindings propagation point. 

In addition, the device bus passes on incoming NoService propagations from the ECU—expressed 
by the error path declaration NoECUService.  

bus DirectAccessMemory 
annex EMV2 {** 
use types SMErrorTypes; 
error propagations 
  bindings: out propagation {NoService, MessageLoss, MessageCorruption}; 
  access: in propagation {NoService}; 
flows 
  NoECUService: error path access {NoService} -> Bindings(NoService); 
  Commerror: error source bindings{MessageLoss, MessageCorruption}  
    when {DeviceBusFailure}; 
end propagations; 
**}; 
end DirectAccessMemory; 

Figure 20: Fault Model Specification of the Direct Access Memory 

Propagations from the direct access memory affect the connection between SM_PCS and 
SM_ACT. Type transformation rules associated with the connection specify that NoService and 
MessageLoss from the bus result in NoCommandSequence and MissingStepCommand. 
MessageCorruption results in a ValueError for the commanded position arriving at SM_ACT. 
Note that a value error can be subtle or detectable out-of-range value. 

5.1.7 The Power Supply Architecture Fault Model 

The power supply is the error source for PowerLoss, which is propagated to all components con-
nected to this power source—in our example, to the ECU, actuator, and stepper motor.  

5.1.8 The Fuel-Valve Architecture Fault Model 

The fuel valve can fail (ValveFailure). In addition, incoming MissedStep errors are mapped to 
valve errors in the form of IncorrectFlow. Similarly, an incoming NoSteps error has the effect of a 
StuckValve. A slow response by the stepper motor propagates as SlowResponse. We assume that 
delayed response to a new command will not occur—expressed by not in/out propagation for 
DelayedResponse. 

device Valve 
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features 
  MechanicalValveControl: in feature; 
  FuelFlow: out feature; 
annex EMV2 {** 
use types SMErrorTypes; 
error propagations 
  MechanicalValveControl: in propagation { NoSteps, MissedStep,   
    SlowResponse}; 
  MechanicalValveControl: not in propagation {DelayedResponse}; 
  FuelFlow: out propagation {StuckValve, IncorrectFlow, SlowResponse}; 
  FuelFlow: not out propagation {DelayedResponse}; 
flows 
  FailedValve: error source FuelFlow{StuckValve} when {ValveFailure}; 
  MapToStuckValve: error path MechanicalValveControl{NoSteps}  
    -> FuelFlow{StuckValve}; 
  MapToIncorrectFlow: error path MechanicalValveControl{MissedStep}  
    -> FuelFlow{IncorrectFlow}; 
  MapToSluggishResponse: error path MechanicalValveControl{SlowResponse}  
    -> FuelFlow{SlowResponse}; 
end propagations; 
**}; 
end Valve; 

Figure 21: Fault Model Specification of Fuel Valve 

5.1.9 The SMS Architecture Fault Model 

For the SMS we specify fault model information for the SMS implementation and an abstracted 
fault model for the SMS. The fault information for the SMS implementation relates to the interac-
tion between the SMS components (i.e., error behavior associated with connections). The ab-
stracted fault model for SMS allows us to understand the fault behavior of the SMS in the context 
of its operational environment without requiring access to the SMS implementation—it facilitates 
compositional fault model analysis.  

The abstracted fault model will be checked for consistency with the fault models of the system 
implementation components. The incoming and outgoing error propagation declarations must be 
consistent with those in the SMS implementation subcomponents that are connected to each of 
these interaction points (port, bus access, and feature). Similarly, error source, error path, and er-
ror sink declarations must be consistent with the fault behavior of the SMS subcomponent error 
models.  

A set of type transformation rules specifies how the error propagations from the direct access 
memory affect the commanded position command being transmitted between SM_PCS and 
SM_ACT. NoService and MessageLoss from the bus result in NoCommandSequence and 
MissingStepCommand. MessageCorruption results in a ValueError for the commanded position 
arriving at SM_ACT. This type transformation set is associated with the 
SendPositionChangeCommand connection in the connection error section of the EMV2 subclause 
in the SMS.Original system implementation. 

The abstracted fault model for the SMS is specified in the system type (shown in Figure 22). It 
documents assumptions made about incoming propagations to SMS and how SMS handles them, 
about outgoing propagations from SMS, and whether SMS is the source. This specification is 
common to all implementations of SMS.  
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For the SMS variant, we document that it is the error source for MissedStep in the system imple-
mentation declaration SMS.Original as shown in Figure 23. This specification inherits the EMV2 
declarations from the system type SMS. 
System SMS 
features 
  Desired_Position: in data port SM_Position; 
  Mechanical_Control_Position: out feature; 
  DMA: requires bus access DirectAccessMemory; 
  Power: requires bus access Power_Supply.Volt28; 
annex EMV2 {** 
use types SMErrorTypes; 
error propagations 
  DesiredPosition: in propagation {NoCommandSequence, MissingCommand,  
     OutOfRange}; 
  Mechanical_Control_Position: out propagation {MissedStep, NoSteps,  
    SlowResponse}; 
  Mechanical_Control_Position: not out propagation {DelayedResponse}; 
  Power: in propagation {PowerLoss}; 
  Processor: in propagation {NoService, CompletionTiming};  
  Connection: in propagation {NoService, MessageLoss, MessageCorruption}; 
flows 
  DPpath1: error path DesiredPosition{NoCommandSequence}  
    -> Mechanical_Control_Position{NoService}; 
  DPpath2: error path DesiredPosition{MissingCommand}  
    -> Mechanical_Control_Position {MissedStep}; 
  DPpath3: error path DesiredPosition{NoCommandSequence}  
    -> Mechanical_Control_Position {NoService}; 
  -- mapping of power errors 
  powerpath: error path Power{PowerLoss}  
    -> Mechanical_Control_Position (NoService); 
  ECUpath: error path Processor{NoService}  
    -> Mechanical_Control_Position {NoService}; 
  Connectionpath: error path Connection {MessageCorruption}  
    -> Mechanical_Control_Position {MissedStep}; 
end propagations; 
**}; 
end SMS; 

Figure 22: Abstracted Fault Model Specification for SMS 
 
System implementation SMS.Original 
-- subcomponents and connections 
annex EMV2 {** 
use types SMErrorTypes; 
error propagations 
flows 
  MissedStepSource: error source Mechanical_Control_Position{MissedStep}; 
end propagations; 
**}; 
end SMS.Original; 

Figure 23: SMS Variant Specific Fault Information 

5.2 Fault Impact Analysis of the Original SMS Architecture 

In this section we use fault impact analysis on the architecture fault model to determine potential 
contributors to the missed step problem, to identify potentially unhandled faults, and to assess the 
resilience of SMS to fault propagations from the operational environment. In the next section we 
will quantify timing-related error propagation types as timing conditions that must be satisfied for 
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the error propagation not to occur. These conditions become derived safety requirements on the 
SMS components. 

We create an instance model of the system implementation SMS.Original in its operational envi-
ronment and perform fault impact analysis on it. In the process the EMV2 consistency checker 
will ensure that all incoming error propagation assumptions are met by outgoing propagation 
guarantees and that the propagation specifications in the abstracted SMS fault model are con-
sistent with those of the SMS components. For example, the consistency checker would give a 
warning if we had forgotten to specify that SM_PCS will not propagate OutOfRange errors, an 
assumption made by SM_ACT (shown in Figure 24).  

 

Figure 24: Missing Error Containment Guarantee Specification 

Fault impact analysis traces propagation of every error source, representing a failure mode, to 
components impacted by the effect of the propagation, and does so multiple levels deep. A sample 
of the resulting report is shown in Figure 25.  

From this report we can identify all the error sources that result in a missed step (i.e., a violation 
of SMS-Req-3). The report shows that timing errors in the form of EarlyDelivery and rate errors 
in the form of HighRate can result in missed steps, while LateDelivery and LowRate result in 
SlowResponse. In the next section we will quantify the amount of time for early delivery that re-
sults in a missed step as well as the deviation from the expected rate at which commands are sup-
plied. Slow response within bounds by the SMS is considered an acceptable risk for the ECS. 

 

Figure 25: Fault Impact Report for SMS 

The report also shows the impact of mechanical failures, of power loss, and of data corruption by 
the direct access memory. Mechanical failures and power loss are typically identified during a 
system safety analysis and the impact is as expected unless addressed by redundancy.  

Data corruption is a more interesting case. Transient data corruption on the direct access memory 
can be due to factors such as vibration, heat, or radiation. Such corruption leads to value errors, 
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both detectable (in that the step count value is out of range), and subtle (where the step count is 
incorrect but within range or where the direction is flipped, resulting in potentially commanding 
outside the acceptable range of positions and in inconsistency between the actual position and the 
commanded position (SMS-Req-3)).  

When performing fault impact analysis the consistency checker will flag the fact that value errors 
are being propagated from the direct access memory into the connection between SM_PCS and 
SM_ACT. However, SM_ACT assumes that it is not receiving any out-of-range values. In other 
words, we have unhandled faults originating in the direct access memory. A possible correction of 
this problem is for SM_ACT to check for out-of-range values and ignore them. 

5.3 Quantified Time-Sensitive Derived Safety Requirements 

In this section we quantify the fault condition for missed steps due to early delivery and mis-
matched command rate (SMS-Req-3), as well as the condition that must be met in order to assure 
immediate response to new commands (SMS-Req-6). These requirements apply to any stepper 
motor or other control system with a command recipient that does not buffer commands and as-
sumes a constant command stream.  

5.3.1 Derived Requirement for Early Command Delivery 

Early delivery of a position-change command to SM_ACT can result in a missed step if the com-
mand arrives while the step count for the previous command is non-zero. This is due to the fact 
that the newly arriving command is responded to immediately by aborting the previous command 
as expressed in the interface specification in Figure 12—implemented by resetting the step count 
to the new command value even though the old command execution is still in progress as ex-
pressed abstractly in Figure 14.  

This leads to the following condition that must be satisfied in order to avoid a missed step. The 
worst-case inter-arrival time variation for commands arriving at SM_ACT must be less than the 
time difference between the next frame and the latest time for a non-zero step count value, that is,  
the derived requirement for the SMS implementation  
SMS-Req-D1:  Delta(InterarrivalTime) < StepMissBound. 

The inter-arrival time variation is determined by the variation in the time at which the command is 
sent by SM_PCS and variation in communication time, that is  
Delta(Interarrival) = Delta(SendSM_PCS)+ Delta(Comm) 

Appendix B provides a formula for the inter-arrival time variation for the specific task set execut-
ing on the ECU using the worst-case send time assumption of sending at the end of task execu-
tion. For the general case, a scheduling analyzer can provide best-case and worst-case task com-
pletion times for SM_PCS.  

The value of step count is non-zero until the last step of a position-change command has been is-
sued (i.e., until (Step_Count -1) * Step_Duration). This results in a worst-case step miss bound for 
the maximum acceptable variation of inter-arrival time of  
StepMissBound = 25ms – ((MaxStepCount -1) * max(Step_Duration))  
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According to specifications for the nominal rate of 600 steps per second, the step duration varies 
between 578 (1.730ms step duration) and a maximum of 621 steps (1.61ms step duration). Using 
the maximum step duration as worst case, this results in a step miss bound of 0.78ms. Notice that 
this bound is less than the minimum duration of one step.  

When we compare the step miss bound against the maximum inter-arrival variation, we determine 
whether the sum of communication variation, execution time variation in SM_PCS, maximum ex-
ecution time of HM, and multiples of execution time variation in HM can possibly exceed 
0.78ms.  

This verification constraint has been specified as a Lute theorem that interprets the relevant model 
properties to determine whether the maximum inter-arrival time variation exceeds the step miss 
bound. Evaluation of this theorem provides analytical evidence as to whether a missed step can 
occur. 

We have also generated a prototype implementation of the SMS architecture in Java. This imple-
mentation of SMS has been exercised with execution time variations as specified in the AADL 
model and has resulted in missed steps. This provides further evidence that the problem of missed 
steps is inherent in the original SMS design. 

5.3.2 Derived Requirement for Rate Mismatch 

A rate mismatch between the sender SM_PCS and the receiver SM_ACT can occur for two rea-
sons:  

 SM_PCS executes at a rate faster than the specified 25ms frame rate  

 SM_ACT requires more than 25ms to complete the execution of the position-change com-
mand. 

SM_PCS can execute faster than 25ms if the hardware clock of the ECU operates faster. For our 
case study we assume that this is not the case.  

As mentioned earlier, the data sheet for the stepper motor indicates that the stepper motor’s step 
duration varies between 578 and 621 steps per second when executing at the rate of 15 steps per 
frame. This results in an SM_ACT completion time variation between 24.15ms and 25.95ms for 
performing 15 steps.  

In other words, SM_ACT potentially may execute at a lower rate than the rate at which SM_PCS 
sends commands.  

In a worst-case scenario, the stepper motor could continuously operate at the longest step duration 
if it is caused by mechanical conditions, such as increased friction due to high temperature, falling 
behind 0.95ms for every frame that executes a position-change command of 15 steps. 

We observe that the completion delay is cumulative for a sequence of consecutive maximum step 
count commands. Note that SM_PCS sends the maximum step count only until the desired posi-
tion is reached. A step count less than the maximum allows the stepper motor to catch up with the 
SM_ACT commands and make up for the time delay.  

This leads to the derived requirement for the SMS implementation  
SMS-Req-D2:  max(StepDuration) * MaxStepCount * max(MaxStepCountCom-
mandSequenceLength) < StepMissBound. 



 

CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  41 

It takes 16 commands (250/15) to go from a completely closed to a completely open position with 
a cumulative delay of 15.2ms. This figure is still less than one frame length (25ms) but larger than 
the step miss bound, leading to missed steps.  

To make matter worse, the maximum step count sequence potentially can be longer. A new de-
sired position may be issued before the previous one has been reached. The new position may be 
in the opposite direction from the current position. As a result, the sequence of maximum step 
commands is extended. If the controller shows oscillating behavior we may face a potentially un-
bounded sequence of maximum step commands.  

The condition for a rate mismatch between SM_PCS and SM_ACT has been specified as a Lute 
theorem. When applied to the SMS model it will inform us whether such a rate mismatch is possi-
ble for a given range of step duration values. 

5.3.3 Derived Requirement for Immediate Command Response 

SM-Req-6 specifies that SMS immediately respond to a new desired-position command, even 
when the previously commanded desired position has not been reached. This requirement can be 
violated if the new command is queued and processed only after completion of the previous 
command. In the architecture fault model we have specified by the error type alias 
DelayedResponse that this is assumed not to occur. 

We can validate that such behavior does not occur in two ways. First, we specify a derived re-
quirement SMS-Req-D3 reflecting acceptable delay in immediate processing is caused by queuing 
ports in communication or by buffering of the command in the SM_PCS internal program logic. 
We have specified a Lute theorem to determine whether the DesiredPosition command is queued 
in its processing path. When applied to the original SMS model it evaluates to the condition being 
satisfied. 

Second, we specify a derived requirement SMS-Req-D4 of maximum the end-to-end latency for 
initiating the first step of a new desired-position command. An acceptable delay is less than two 
frames: one frame to accommodate sampling delay by SM_PCS and one frame to push the execu-
tion of the first step through to the stepper motor. For that purpose, we have specified an end-to-
end flow in the architecture model with a maximum expected latency (see Figure 26). End-to-end 
latency analysis is used to determine whether the requirement is satisfied. End-to-end latency 
analysis takes into account latency contributions by periodically sampling tasks and by aperiodic 
tasks with possible queuing delays as well as worst-case task completion time and communication 
time.  

flows 
  smcmdflow: end to end flow  
    CS.flowsource -> valvecmd -> SMS.flowsink {Latency => 50 ms .. 50 ms;}; 

Figure 26:  End-to-End Flow Specification for SMS Commands 

The results of an end-to-end latency analysis on our example show that the end-to-end latency 
numbers are within the expected processing delay of 50ms (see Figure 27). 
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Figure 27: End-to-End Latency for the Original Design 

5.4 Analysis of the Fixed Command Send Time Solution 

The fixed command send time solution uses a fixed offset from the frame for SM_PCS to send the 
position-change command. This affects the architecture fault model in two ways: 

 It reduces the inter-arrival time variation considerably, possibly guaranteeing a value below 
the StepMissBound. 

 It introduces a DelayedDelivery if SM_PCS normally completes below the specified offset. 
This additional delay results in a SlowResponse behavior by the control system. The quanti-
fied increase in control lag must be assessed at the ECS for acceptability.  

The fixed command send time solution does not change the derived requirement SMS-Req-D2 ad-
dressing rate mismatch. In other words, the condition for a potential missed step due to rate mis-
match is the same as for the original design.  

Although DelayedDelivery introduces a delay in response time to a command, the delay is within 
a frame and is accounted for by SMS-Req-D4. 

5.5 Analysis of the Buffered Position-Change Command Solution 

The buffered position-change command solution uses a buffer for position-change commands ar-
riving at SM_ACT. This affects the architecture fault model in the following way: 

 It allows SM_ACT to accommodate for EarlyDelivery (i.e., SM_ACT becomes a sink of this 
error propagation—eliminating the need for SMS-Req-D1). A queue size of one is sufficient 
because only one command is sent per frame assuming no rate error. 

The buffered position-change command solution changes the derived requirement SMS-Req-D2 
addressing rate mismatch by increasing the threshold from StepMissBound to 
StepMissBound + 25ms. However, given the potential for unbounded maximum step count 
command sequences the mismatched rate problem still exists.  

The buffered position-change command solution introduces a queue for commands to SM_ACT. 
This queue applies only to position changes delaying its early arrival until the expected time. We 
reflect this in SMS-Req-D3. From an end-to-end latency perspective the delay in response time to 
a command is less than a frame and is accounted for by SMS-Req-D4. 

5.6 Analysis of the Position-Commanded Actuator Design Alternative 

In the position-commanded actuator design solution SM_PCS is reduced to checking the range of 
the incoming desired position and to sending the desired position to the actuator every 25ms. This 
affects the architecture fault model in two ways: 
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 EarlyDelivery propagation to SM_ACT results in a FastResponse propagation instead of a 
MissingStepCommand. 

 Similarly, HighRate propagation to SM_ACT results in a FastResponse propagation instead 
of a MissingStepCommand. 

This eliminates the error sources within SMS and derived requirements SMS-Req-D1 and SMS-
Req-D2 to address missed steps.  

The position-commanded actuator design solution does not introduce unnecessary buffering of de-
sired position commands (i.e., SMS-Req-D3 and SMS-Req-D4 will be satisfied). 

The original solution was sensitive to value corruption by the direct access memory. A corrupted 
step count would result in SM_ACT commanding the stepper motor to an incorrect actual position 
without the opportunity to detect and correct the error. By sending the desired position repeatedly, 
SM_PCS addresses transient corruption of the commanded position. SM_ACT may temporarily 
move towards an incorrect position (subtle value error) and, by checking the range, avoid out-of-
range positioning. However, assuming transient corruption, uncorrupted transfer of the desired 
position in succeeding periods self-corrects the transient error. In other words, this design is resili-
ent to transient data corruption by the direct access memory. 

5.7 Comparison of the SMS Designs 

Table 2 presents a comparison of the four architecture design alternatives in terms of their fault 
models. The first row focuses on logical failures in the SMS design, the second row describes me-
chanical failures within the SMS, the third row captures the effects of computer hardware on the 
SMS, and the last row represents mechanical failures in the operational environment.  

The comparison shows that the position-commanded actuator design is not sensitive to early de-
livery or high rate errors, nor is it sensitive to transient message corruption or loss, while the origi-
nal design and the two corrections are sensitive to transient data corruption. This is due to the de-
sign choice of commanding the actuator by desired position rather than by a sequence of position-
change commands. The two corrections to the missed step problem, fixed send time and buffered 
command, address early delivery as a cause of missed steps, but do not address rate mismatch. 

We can also see that mechanical failures affect the SMS the same way in both designs and must 
be addressed at the enclosing system level (e.g., by replication of the engine control system and 
the engine).  

Table 2: Comparison of Architecture Design Alternatives 

Missed Step Original Design Fixed Send Time Buffered Command Position Command 

SMS logical 
failures 

EarlyDelivery  
HighRate 

HighRate HighRate  

SMS mechani-
cal failures 

ActuatorFailure Step-
perMotorFailure 

ActuatorFailure Step-
perMotorFailure 

ActuatorFailure Step-
perMotorFailure 

ActuatorFailure Step-
perMotorFailure 

Transient 
comm failures 

MessageCorruption 
MessageLoss  

MessageCorruption 
MessageLoss 

MessageCorruption 
MessageLoss 

 

Mechanical 
failures in Op 
Environment 

ECUFailure  
PowerLoss ValveFail-
ure 

ECUFailure  
PowerLoss ValveFail-
ure 

ECUFailure  
PowerLoss ValveFail-
ure 

ECUFailure  
PowerLoss ValveFail-
ure 
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The architecture fault model analysis is a good source for developing a confidence map for each 
design alternative. The top-level claim of the SMS confidence map reflects a safety requirement 
that the actual stepper-motor position and the position known to SMS must be consistent.  

Error source specifications of system components can become potential defeaters if they impact 
system properties that reflect the safety-related requirements. In the case of the stepper motor, one 
example is the safety requirement stating that the fuel valve must reach the desired position. This 
requirement can be violated if the SMS position control function can result in missed step com-
manding. Fault impact analysis tells us which error sources can impact the derived requirement to 
command the correct number of steps. 

Finally, the architecture fault model includes assumptions about the absence of certain error prop-
agations. In particular, the fault model interface specification of SM_PCS states that it is not a 
source of computational errors. This claim is addressed in the confidence map. 
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 Establishing Confidence in the SMS  

In this section we develop confidence maps for the baseline architecture design as well as for one 
of the alternative designs (the position-commanded design). We draw on the insights gained from 
the architecture fault model analysis to help us identify error sources as defeaters, in particular 
those that impact the operation in an undesirable manner. 

6.1 Confidence Maps for SMS 

The purpose of this section is twofold: 

1. to show how developing a confidence map can help identify specific areas where verification 
and validation (V&V) efforts should be focused for a given design 

2. to show how developing confidence maps for alternative designs can help with choosing the 
one that will lead to higher levels of justified confidence at a lower expenditure of scarce as-
surance resources 

This section will discuss two of the candidate designs (the original design and the position-com-
manded design analyzed in the previous section) and what the confidence map for each tells us 
about the system. Since the problem area being investigated is primarily in the interaction be-
tween the position control system and the actuator that drives the stepper motor for the fuel valve, 
we consider only two subsystems as an architecture abstraction: the position control system for 
the fuel-valve stepper motor (referred to as SM_PCS), and the stepper motor that is mechanically 
connected to the fuel valve (SM). SM_PCS includes the conversion from a fuel-valve position 
(represented as a percent open Desired_Position as requested by the ECS) to the position in terms 
of stepper-motor steps Mechanical_Control_Position. SM includes the stepper-motor actuator 
(SM_ACT in the AADL model), the stepper motor (SM_Motor), and the fuel valve. In the AADL 
representation of the system these are separate components, a distinction not necessary here.  

When creating confidence maps we use requirements associated with the architecture model to 
establish claims. We also use the specification of faults that manifest themselves as violation of 
requirements or nonfunctioning components, or the assumed absence of specific faults to identify 
defeaters and assertion of their absence. The decomposition of SMS requirements into require-
ments on its subsystems as well as the derivation of requirements is reflected in the hierarchical 
structuring of claims and defeaters. 

The confidence map not only considers defects in the system design, but also potential hazards in 
the development and verification process that may lead to reduced confidence in the presented ev-
idence that requirements have been met and defeaters have been eliminated. 

6.1.1 The Stepper Motor 

The components of the SM have been adequately described earlier in this report. For purposes of 
the confidence map, we treat the SM as a black box consisting of those components.  
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newly desired position without regard to the previously desired position. Note that this idea is not 
captured by the claim C1.1, which only requires that the SM be able to reach the new position 
within time T, but it is captured by the context Cx1.1a. A poorly designed SM_PCS could issue 
sub-optimal commands to the SM, causing it to take time T to move to the new position even 
when it was adjacent to the old one. 

In addition, the context (Cx1.1a) provides a definition of what it means to satisfy the word “accu-
rately” in claim C1.1. 

There are four rebutting defeaters, which say that claim C1.1 would not be true if 

1. There is a malfunction in the stepper motor. This corresponds to the error source declarations 
of type NoCommandSequence and NoSteps reflecting actuator failure and stepper-motor fail-
ure.  

2. The stepper motor is physically incapable of reaching the position commanded within time 
T-F.6 This corresponds to the SlowResponse out propagation from SM, which can be traced 
back to several error sources. 

3. The SM_PCS loses track of the position of the stepper motor. This corresponds to the 
MissedStep out propagation of SM, which can be traced back to originating in the actuator 
due to an incoming EarlyDelivery or RateError. 

4. The SM_PCS does not issue the appropriate commands to the stepper motor. This corre-
sponds to StepCountOutOfRange, ResultingPositionOutOfRange, and SubtleValueError in 
the position-change command sent to the actuator. 

The inference rule (IR2.5) says (essentially) that if all of these defeaters can be eliminated then 
the claim C1.1 is valid (but of course it is still necessary to consider any possible undercutting de-
featers that apply to the inference rule). In the following section we’ll discuss R2.3 and how it can 
be eliminated. A discussion of other portions of the confidence map can be found in the Appen-
dix. 

 
6  T-F rather than just T because the current frame might have to complete its execution before the SM can begin 

to respond to a new ECS request. 
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The third reason why the SM might not be finished executing the previous command by the time 
the SM_PCS is ready to issue a new one is that it (the SM_PCS) did not give the SM at least F ms 
to execute the previous command. This would occur if the SM_PCS did not run at the same point 
in every frame (for instance late in one frame and on time in the next), resulting in an inter-arrival 
time of commands to the SM of less than F. This requires more analysis than a simple inspection 
of the schedule and the argument above suggests analysis using an AADL model to take into ac-
count preemption effects of other computations sharing the processor on which the SM_PCS task 
is running. 

Note that defeater R6.6 corresponds to the potential of MissingStepCommand due to timing or rate 
errors quantified by the inter-arrival time variation and step miss bound discussed in Section 5.3 
and Appendix B. 

6.1.4 Using the Confidence Map to Allocate Assurance Resources 

The best way to use the confidence map to determine how to allocate assurance resources is to 
begin at the leaves of the confidence map. The leaves show what ultimately has to be true for the 
top-level claim to be true. Looking at the details of the complete confidence map (including those 
parts discussed in the Appendix), under this design, the items that must be checked to have confi-
dence in the claim that “the SM_PCS will accurately position the SM to the position most recently 
requested by the ECS within time T” include 

 Does the SM have sufficient reliability for the application? 

 Is the SM physically capable of moving from an arbitrary position to another arbitrary posi-
tion within time T? 

 Does the SM initialize to the fully closed position at startup? 

 Does the SM_PCS keep track of all commands it issues to the SM? 

 Is the SM always able to move the maximum number of steps requested by the SM_PCS in a 
single frame within that frame? 

 Is the SM_PCS scheduled at a frame rate of F? 

 Is the system clock accurate enough for the application? 

 Is the minimum inter-arrival time for commands to the SM less than F? 

 Will the SM_PCS always issue the correct command (direction and number of steps)? 

 Does the compiler compile the code correctly? Does the hardware execute the compiled code 
correctly? Is it certain that the execution environment will not interfere with correct execu-
tion of the code? 

 Does the link between the SM_PCS and the SM have sufficient reliability for the applica-
tion? 

If all of the above points can be shown, then there should be high confidence that the SM_PCS 
and SM will be able to meet the claim C1.1.  
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6.2 Confidence in the Position-Commanded (“Alternate”) Design for the Stepper 
Motor 

During the course of this work we considered the complexity of the above design of the SM_PCS 
and wondered if it could be simplified to make achieving a high level of confidence an “easier” 
undertaking. “Easier” can mean several different things such as 

 requiring less evidence to eliminate the set of defeaters  

 requiring less time to eliminate a set of defeaters 

 requiring less money to eliminate a set of defeaters 

At this point in our work, determining this is somewhat subjective. In future work we hope to be 
able to provide a more objective measure. 

As detailed in Section 4.4.3 the alternative design that we considered in some detail requires that 
the SM be implemented somewhat differently than it is currently.7 Here is a description of that al-
ternative SM. Aspects of the original design that are no longer necessary have been struck out. 
Additions are shown in red.  

For our purposes the stepper motor is a black box that controls a valve. The valve can be set 
at N discrete positions from 0 (fully closed) to N (fully opened.) The control system for the 
stepper motor takes three parameters set via a data link: s (number of steps to take), d (di
rection to move), and r (rate  how fast to move). Note that the stepper motor is not com
manded to move to a particular position  it is only commanded to move a certain number 
of steps from its current position. The stepper motor takes a single parameter, the desired 
position, via a data link and immediately begins to move to that position. If the position re-
quested is changed then the stepper motor begins to move to that position instead. 

The SM does not provide feedback on the actual position of the stepper motor to the software 
using it. The software must infer it, either from observation of the results of opening or clos-
ing the valve, or by keeping track of the cumulative effect of commands it issued to the step-
per motor. When the stepper motor is initialized it homes to the fully closed position. 

As you can see, this is a relatively small change to the logic of the stepper motor.8 It is interesting 
to see how this small change affects the confidence map. 

6.2.1 Top Level 

The claim C1.1 is identical in this map to that of the original map. The context Cx1.1a is also 
identical. The assumption (A1.1a) reflects the change in SM design. 

 
7  The SM is being treated as an OEM product in this report. In such a case, it may not be possible to get the 

manufacturer to make such a design change. Nevertheless, this is an interesting exercise. 

8  In the original design, the stepper motor would decrement a counter after each step and when it reached zero, 
stop moving. In the revised design the stepper motor would decrement or increment a position variable after 
each step and compare it to the desired position. When the comparison was equal it would stop moving. 
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that it seems relatively easy to obtain. Eliminating some of the defeaters will take more work than 
eliminating others, but the fact that the confidence map highlights them is important. It allows the 
designer to identify points at which things can possibly go wrong and to intelligently make deci-
sions as to which to expend the most resources on elimination. 

The alternate (position-commanded) design (at least from the point of view of the SM_PCS) has a 
significantly shorter list of defeaters to eliminate, and some of the defeaters in the original design 
will (subjectively) take more effort to remove than any in the alternative design. In no case should 
it take more work to eliminate a defeater in the position-commanded design than in the original 
design. 

 

Figure 36: Evidence Required for the Two Designs 

As mentioned before, at this point in our research we treat the measurement of the relative effort 
necessary to show confidence between alternate designs subjectively. Effort can be affected either 
by having to collect more evidence for one design than for the other or by having to work harder 
to collect similar or identical evidence in one design than for the other. 

In our two example designs, the original requires that 12 pieces of evidence be collected while the 
alternative only requires seven. Furthermore the seven in the alterative design all have counter-
parts (identical or similar) in the original design. So, all else being equal, this would lead to the 
conclusion that achieving confidence in the original design will require significantly more effort 
than achieving it in the alternate design. The only way this conclusion would not follow would be 

Evidence Original Alternate
Subjective Difficulty

Needed Evidence Original Alternate
The SM is reliable enough for the application UM6.1 UM6.1
The SM can move between arbitrary points within T-F ms. UM4.3 UM5.2
The SM homes to the closed position at start up UM7.2
The SM_PCS accurately knows where the SM is at the start of each 
frame. R5.5
The SM is capable of always moving S steps within a frame R8.3
The SM_PCS is scheduled at rate F R7.6
The SM_PCS commands a position requested by the ECS within F R3.3
The actual clock accuracy conforms to calculated clock accuracy UM9.2
The AADL model shows the minimal interarrival time of the 
execution of SM_PCS to be >= F. UM8.6
The SM_PCS always calculates the proper number of steps and 
direction to move at each invocation R5.9
The SM_PCS properly transforms the ECS commanded position to 
a position for the SM R4.5
The SM_PCS code executes properly R5.10 UM6.5
The SM runs in an appropriate execution environment UC6.10 UC5.5
The data link between the SM_PCS and the SM is of sufficient 
reliability for the application UM7.11 UM8.1
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if obtaining the identical (or similar) evidence for the alternate design was significantly more dif-
ficult than obtaining it for the original design. From reviewing the lists in the previous section it 
seems clear that this would not be the case. 
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 Conclusions 

The purpose of this case study was to show how architecture fault modeling and analysis can be 
used to diagnose a time-sensitive design error encountered in a control system and to investigate 
whether proposed changes to the system address the problem. The analytical approach demon-
strates that such errors that are hard to test for can be discovered and corrected early in the life-
cycle, thereby reducing rework cost. The case study shows that by combining the analytical ap-
proach with confidence maps we can present a structured argument that system requirements have 
been met and problems in the design have been addressed adequately—increasing our confidence 
in the system quality.  

The case study system is an SMS that is part of an engine control system. Its design had been ver-
ified with SCADE without discovering—until system integration and operational testing—the po-
tential for missed step commanding due to variation in command inter-arrival time. Two possible 
solutions to the problem had been proposed. 

In this case study we have combined architecture and fault modeling and analysis with confidence 
arguments—drawing on a framework for software assurance and software quality improvement 
[Feiler 2012]. AADL, an SAE architecture description language standard with well-defined exe-
cution and communication semantics suited for embedded software systems, has been used to iter-
atively specify the SMS architecture and its requirements. We have captured the original SMS ar-
chitecture design, both proposed corrections to the design, and a design alternative. This design 
alternative eliminates error sources contributed by the position control system component SMS 
without significantly increasing the complexity of the actuator by commanding the actuator with 
the desired position instead of a sequence of position-change commands in the original design. 

The resulting architecture model was then annotated with fault model specifications expressed in 
the EMV2 annex standard to AADL. We diagnosed the timing-related problem by following a 
safety analysis approach that uses the EMV2 fault propagation ontology to systematically identify 
hazards and their impact on the system. This systematic analysis allowed us to identify not one, 
but two time-sensitive sources for the missed step problem. The analysis also allowed us to con-
firm that an SMS requirement is to immediately respond to new position commands when previ-
ous commands are in progress. It also allowed us to assess the resilience of the different SMS de-
signs to transient data corruption by a direct access memory. It illustrates the consequences of the 
architecture design decision to command the actuator by a sequence of position-change com-
mands in terms of time sensitivity and the assumption of guaranteed delivery and execution of all 
commands. The time-sensitive nature inherent in the original design was not only shown analyti-
cally, but also by an auto-generated prototype implementation in Java. 

The confidence map notation was used to present structured confidence arguments for the SMS 
architectures. Requirements become clearly traceable claims, organized to reflect requirements 
decomposition. Error sources representing potential hazards in the architecture fault model be-
come defeaters with derived safety requirements as claims, whose evidence eliminates the de-
feater. Assumptions in a contract model between components, including the absence of fault prop-
agation, are explicitly recorded. Arguments for the sufficiency of satisfying subclaims and 
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eliminating defeaters to satisfy a claim are captured in inference rules. Eliminative induction sys-
tematically establishes confidence that presented evidence addresses defeaters and claims. This 
evidence can be in the form of traditional activities such as design review, code review, and test-
ing, as well as analytical results based on predictive analysis of the architecture model. Develop-
ment of such a confidence map for both the original SMS architecture and the alternative design 
allowed us to illustrate the difference in effort necessary to establish confidence in qualification 
and certification evidence. 
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 The SMS Data Model 

An instance of the AADL data component type SM_Position represents the position of the stepper 
motor. The data type has been defined as two variants, expressed as the data component imple-
mentation SM_Position.PercentOpen and SM_Position.Steps. The declarations, shown in Figure 
37, include properties to indicate the data representation of the value (Fixed and Integer), accepta-
ble range of values, and the measurement unit as stepper-motor steps (PercentOpen and Steps).  

The specification uses the Data Model Annex standard to characterize details of the data type. The 
role of this annex is to provide properties and guidance on how to map relevant information from 
data models expressed in other modeling notations, for example, UML or source code, into an ar-
chitecture model expressed in AADL. 

The SM_PCS commands SM_ACT to have the stepper motor execute a specified number of 
steps. The command takes three parameters: the direction in which to move the stepper motor (Di-
rection: Open, Close), the number of steps to be executed (StepCount), and the rate (StepRate) at 
which to execute the steps in terms of steps per frame (SPF). The design assumes that the stepper 
motor can completely execute the requested number of steps in one frame duration; consequently, 
the requested step count cannot exceed the number of steps that can be executed in one frame 
(MaxStepCount). The Direction parameter indicates whether to move towards the maximum posi-
tion (Open) or towards zero (Close).  

An instance of the AADL data component type SM_Position_Change represents the position 
change being commanded, that is, the step count, step rate, and direction, and their acceptable 
value ranges. As shown in Figure 37, we use the subcomponent declarations in the AADL data 
component implementation to explicitly represent the fields of the position-change data record. 

data SM_Position 
end SM_Position; 
 
data implementation SM_Position.PercentOpen 
properties 
  Data_Model::Data_Representation => Fixed; 
  Data_Model::Measurement_Unit => "Percent";  
  Data_Model::Integer_Range => 0 .. PCSProperties::MaxPercent; 
end SM_Position.PercentOpen; 
 
data implementation SM_Position.Steps 
properties 
  Data_Model::Data_Representation => Integer; 
  Data_Model::Measurement_Unit => "Steps";  
  Data_Model::Integer_Range => 0 .. PCSProperties::MaxPosition; 
end SM_Position.Steps; 
 
data SM_Position_Change 
end SM_Position_Change; 
 
data implementation SM_Position_Change.DataRecord 
subcomponents 
  StepCount: data { 
    Data_Model::Data_Representation => Integer; 
    Data_Model::Measurement_Unit => "Steps"; 
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    Data_Model::Integer_Range => 0 .. PCSProperties::MaxStepCount; 
  }; 
  StepDirection: data { 
    Data_Model::Data_Representation => Enum; 
    Data_Model::Enumerators => ("Open","Close"); 
  }; 
  StepRate: data { 
    Data_Model::Data_Representation => Integer; 
    Data_Model::Measurement_Unit => "Steps"; 
    Data_Model::Integer_Range =>  
      PCSProperties::MaxStepCount .. PCSProperties::MaxStepCount; 
  }; 
end SM_Position_Change.DataRecord; 

Figure 37: SM_PCS Data Model in AADL 
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 Variation in Inter-Arrival Time 

The inter-arrival time variation is determined by the variation in the time at which the command is 
sent by SM_PCS and variation in communication time, that is, 

Delta(Interarrival) = Delta(SendSM_PCS)+ Delta(Comm) 

For this analysis we assume that the command is sent at completion time of SM_PCS, that is, 
Delta(Send) = Delta(CT). Completion time for SM_PCS is determined by its execution 
time on the processor, by preemption time from higher priority threads—in our example the HM 
thread, and any blocking time on shared logical resources—none in our example. Variation of 
completion time is  

Delta(CTSM_PCS) = Max(CTSM_PCS) – Min(CTSM_PCS).  

Scheduling analysis such as Rate Monotonic Analysis (RMA) determines whether a task meets its 
deadline and in the process calculates worst-case completion time. In our example the task set is 
simple, which leads to a simple formula for calculating the completion time variation from the 
variation of execution time for the two tasks sharing the ECU. 

Maximum completion time variation for SM_PCS is calculated as follows, using ET as execution 
time and PT as preemption time: 

Delta(CTSM_PCS) = Delta(ETSM_PCS) + Delta(PTSM_HM) 

The maximum preemption time variation is calculated as follows: 

Delta(PTSM_HM) = k * Delta(ETHM) + Max(ETSM_HM) 

with k = Ceiling(Max(ETPCS)/PSM_HM) 

As the formula shows, SM_PCS is preempted by SM_HM at least once and can be preempted 
multiple times. Furthermore, SM_HM may preempt SM_PCS one additional time under maxi-
mum ET conditions compared to minimum ET conditions. Thus, the preemption time variation is 
not just a multiple of SM_HM execution time variation but also includes the maximum execution 
time. 

Based on actual or hypothetical data for the execution time variation and communication time 
variation, we can explore under what conditions this variation exceeds the maximum acceptable 
inter-arrival time variation. Note that the logical SM_PCS thread may execute other control func-
tions. Thus, the worst-case variation in Min(ETSM_PCS) and Max(ETSM_PCS) is determined by the 
sum of execution times of all these functions.  
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number if you will) has been incorrectly determined (R4.1). The manufacturer’s data sheet was 
used as evidence of SM reliability (Ev5.1). That evidence can be undermined (UM6.1) if the ac-
tual SM doesn’t conform to the SM that was used to create the data sheet. Of course independent 
tests (Ev7.1) can eliminate that defeater. We choose not to go any further (indicated by the grey 
circle) but we could: for instance, we could undermine Ev7.1 by suggesting that the testing was 
too limited to justify the reliability conclusion and therefore that the test results are irrelevant. 

Note that the justification for eliminating the defeater R2.1 is probabilistic in nature. The Error 
Model annotations can be augmented with such probabilistic data to document the data sheet as-
sumptions and to support reliability and availability predictions of ECS based on the failure prob-
abilities of its parts and external error sources. 

C.1.2 Stepper-Motor Speed Defeater (R2.2) 

The ability for the SM to reach an arbitrary point from an arbitrary point within the requested time 
depends on its design and the values of T and F. If T and F (and S, the rate at which the stepper 
motor moves, in the more general case) are inappropriately chosen with respect to this design, 
then it may not be physically possible for the SM to reach the desired position no matter how effi-
ciently the SM_PCS issues commands to move it. (F comes into the calculation because the ECS 
can request a new position at any time, even immediately after the SM_PCS issues a command, 
and the SM_PCS won’t run again until the next frame.) 
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